​双目立体视觉的3D重建全流程

​双目立体视觉的3D重建全流程

以下是基于双目相机的3D重建标准流程,明确标注极线矫正(Epipolar Rectification)和图间点匹配(Feature Matching)的具体步骤及其作用:

​1. 相机标定(Camera Calibration)​

​目的:获取相机内参(焦距 f、主点 (cx ,cy)、畸变系数)和外参(旋转矩阵 R、平移向量 T)。
​方法:使用标定板(如棋盘格)拍摄多组图像,通过张正友标定法计算参数。
​公式:
t1

K 为内参矩阵,B 为基线长度。

​ 2. 图像采集(Image Acquisition)​

同步捕获左右相机的图像,确保场景一致性。
​关键点:避免光照变化、运动模糊和遮挡。

3. 极线矫正(Epipolar Rectification)​

​位置:流程中预处理阶段,在特征匹配之前。
​目的:消除垂直视差,使极线水平对齐,简化后续匹配。
​步骤:
利用标定得到的 R 和 T,计算左右图像的矫正映射矩阵。
对原始图像进行重投影,生成共面且极线水平的矫正图像。
​公式:

t2


为旋转矩阵,确保光轴平行。

​4. 图间点匹配(Feature Matching)​

​位置:极线矫正后,​立体匹配(Stereo Matching)阶段的核心步骤。
​目的:在左右矫正图像中找到对应像素点,计算水平视差。
​方法:
​局部匹配:滑动窗口法(如SAD、SSD、NCC)。
​全局匹配:动态规划、图割(Graph Cut)。
​深度学习:PSMNet、GC-Net等端到端视差预测网络。
​输出:生成视差图(Disparity Map),每个像素值为左右图像的水平位移。
​## 5. 深度图计算(Depth Map Generation)​
​公式:
t3

d 为视差,Z 为深度,B 为基线长度,f 为焦距。
​优化:通过滤波(中值滤波、双边滤波)去除噪声,填补空洞。

​6. 三维重建(3D Reconstruction)​

​坐标转换:将深度图转换为三维点云。
t4

​输出:生成点云(Point Cloud)或网格模型(Mesh),可用于可视化或进一步分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值