题目
描述
请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。
注:沿棋盘格之间的边缘线行走
数据范围: 1≤n,m≤8
输入描述:
输入两个正整数n和m,用空格隔开。(1≤n,m≤8)
输出描述:
输出一行结果
示例1
输入:2 2
输出:6
解题
这个题目的思路是用递归去写,把大问题化成小问题。有三种情况要去讨论。
第一种情况: m = 1 && n = 1
这种情况的走方格的方案数为:m + n 。
第二种情况:(m = 1 && n > 1) || (n = 1 && m > 1)
这种情况的走方格的方案数为:m + n 。
第三种情况:(m > 1 && n > 1)
这种情况的走方格的方案数为:(m行,n-1列) 方格的方案数 + (n行,m-1列) 方格的方案数 。
举例:3×3的方格:
(3, 3) = (2, 3) + (3, 2); —— (2, 3)、(3, 2)、(3, 3)符合第三种情况
(3, 3) = (2, 2) + (1, 3) + (3, 1) + (2, 2); —— (2, 2)符合第三种情况,(1, 3) 和(3, 1)符合第二种情况
(3, 3) = (2, 1) + (1, 2) + (1, 3) + (3, 1) + (2, 1) + (1, 2); 都符合第二种情况,直接得出结果相加
(3, 3) = 3 + 3 + 4 + 4 + 3 + 3 = 20。
代码
import java.util.*;
public class Main{
public static int func(int m, int n){
if((m == 1 && n >= 1) || (n == 1 && m >=1)){
return m + n;
}
return func(n, m-1) + func(n-1, m);
}
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();
int n = sc.nextInt();
int sum = func(m, n);
System.out.println(sum);
}
}