listwise类方法的一些想法

Inf. Retr. 2010, tendency correlation for direct optimization of evaluation measure in information retrieval.

 

svm-map与svm-ndcg的区别;

lambdarank仅仅是weighted pairwise的方法,从chappelle09年设计的listwise方法中找寻答案;

softrank和ndcgboost两者似乎只有两个区别,一个区别是两者对rank position的期望近似方法不同,另一个区别是求解技术不同,前者用gradient descent,后者用boosting,但这两种方法之间那种期望的近似更合理,是否能找出更好的近似?或者复杂度更低的近似,或者考虑用SVM求解的方法?

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值