题目连接:http://poj.org/problem?id=2079
这个题,给了你很多个点,然后要我们求其中三个点,让这三个点的面积最大。
由于点的数量很多,如果直接O(n^3)暴力的话是肯定会超时的。
稍微好一点的方法是去求一个凸包,如果三角形的面积要最大,那么这三个点必然位于凸包之上(凸包之后,点的数量就大大减少了)
但是此时在凸包上直接暴力也是不合理的。这里有一个O(n)的方法就是旋转卡壳。
就是不断的枚举三个点p,q,r(逆时针方向,顺时针方向可以自己任意定)
最后没举出一个最大值~
我的代码:
#include<stdio.h> #include<math.h> #include<algorithm> #define eps 1e-8 #define maxn 50005 using namespace std; struct point { double x; double y; }; point p[maxn]; point s[maxn]; double cross(point p1,point p2,point p0) { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } double dis(point a,point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } bool cmp(point p1,point p2) { if(cross(p1,p2,p[0])>0||(cross(p1,p2,p[0])==0&&(dis(p1,p[0])<dis(p2,p[0])))) return true; else return false; } double AREA(point a,point b,point c) { double t=fabs(cross(a,b,c)); return t/2; } double max(double a,double b) { if(a>b) return a; else return b; } void RC(int n) { double area; int pp,qq,rr; int p=0,q=1,r=2; area=AREA(s[p],s[q],s[r]); while(1) { pp=p,qq=q,rr=r; while(fabs(cross(s[(r+1)%n],s[q],s[p]))>fabs(cross(s[r],s[q],s[p]))) { area=max(area,AREA(s[(r+1)%n],s[q],s[p])); r=(r+1)%n; } while(fabs(cross(s[r],s[(q+1)%n],s[p]))>fabs(cross(s[r],s[q],s[p]))) { area=max(area,AREA(s[r],s[(q+1)%n],s[p])); q=(q+1)%n; } while(fabs(cross(s[r],s[q],s[(p+1)%n]))>fabs(cross(s[r],s[q],s[p]))) { area=max(area,AREA(s[r],s[q],s[(p+1)%n])); p=(p+1)%n; } if(pp==p&&qq==q&&rr==r) r=(r+1)%n; if(r==0) break; } printf("%.2lf\n",area); } void graham(int n) { int top,i,tmp=0; for(i=1;i<n;i++) { if((p[i].y<p[tmp].y)||((p[i].y==p[tmp].y)&&(p[i].x<p[tmp].x))) tmp=i; } swap(p[0],p[tmp]); sort(p+1,p+n,cmp); top=1; s[0]=p[0]; s[1]=p[1]; for(i=2;i<n;i++) { while(top&&cross(p[i],s[top],s[top-1])>=0) top--; s[++top]=p[i]; } if(top+1<2) { printf("0.00\n"); return; } RC(top+1); } int main() { int n,i; while(scanf("%d",&n)!=EOF) { if(n==-1) break; for(i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); graham(n); } return 0; }