//题意:在点集中求构成三角形的最大面积。
//思路:面积最大的三角形的顶点必然在凸包上(证明略),然后对凸包取三个点i, j, k进行旋转卡壳。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
struct Point{
int x, y;
}p1[50005], p[50005];
int n1, n;
double max(double t1, double t2){
return t1>t2? t1: t2;
}
double x_mult(Point sp, Point ep, Point op){
return (sp.x-op.x)*(ep.y-op.y)-(sp.y-op.y)*(ep.x-op.x);
}
bool cmp(const Point p1, const Point p2){
return p1.y<p2.y ||(p1.y==p2.y&&p1.x<p2.x);
}
int graham(Point pp[], int sum, Point res[]){
int i, len1, k=0, top=1;
sort(pp,pp+sum,cmp);
res[0]=pp[0];
res[1]=pp[1];
res[2]=pp[2];
for(i=2; i<sum; i++){
while(top&&x_mult(pp[i],res[top],res[top-1])>=0)
top--;
res[++top]=pp[i];
}
len1=top; res[++top]=pp[sum-2];
for(i=sum-3; i>=0; i--){
while(top!=len1&&x_mult(pp[i],res[top],res[top-1])>=0)
top--;
res[++top]=pp[i];
}
return top;
}
double rotating_calipers(Point *ch,int sum){
int i=0, j=1, k=2;
ch[sum]=ch[0];
double ans=x_mult(ch[1], ch[2], ch[0]);
while(k){
int ii=i, jj=j, kk=k;
while(x_mult(ch[j], ch[(k+1)%sum], ch[i])>x_mult(ch[j], ch[k], ch[i])){
k=(k+1)%sum;
ans=max(ans, x_mult(ch[j], ch[k], ch[i]));
}
while(x_mult(ch[(j+1)%sum], ch[k], ch[i])>x_mult(ch[j], ch[k], ch[i])){
j=(j+1)%sum;
ans=max(ans, x_mult(ch[j], ch[k], ch[i]));
}
while(x_mult(ch[j], ch[k], ch[(i+1)%sum])>x_mult(ch[j], ch[k], ch[i])){
i=(i+1)%sum;
ans=max(ans, x_mult(ch[j], ch[k], ch[i]));
}
if(ii==i&&jj==j&&kk==k)
k=(k+1)%sum;
}
return ans;
}
int main(){
//freopen("1.txt", "r", stdin);
while(scanf("%d", &n1)&&n1!=-1){
for(int i=0; i<n1; i++)
scanf("%d%d", &p1[i].x, &p1[i].y);
n=graham(p1, n1, p);
printf("%.2f\n", rotating_calipers(p, n)/2);
}
return 0;
}