poj 2079 Triangle

//题意:在点集中求构成三角形的最大面积。

//思路:面积最大的三角形的顶点必然在凸包上(证明略),然后对凸包取三个点i, j, k进行旋转卡壳。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
struct Point{
    int x, y;
}p1[50005], p[50005];
int n1, n;
double max(double t1, double t2){
    return t1>t2? t1: t2;
}
double x_mult(Point sp, Point ep, Point op){
    return (sp.x-op.x)*(ep.y-op.y)-(sp.y-op.y)*(ep.x-op.x);
}
bool cmp(const Point p1, const Point p2){
    return p1.y<p2.y ||(p1.y==p2.y&&p1.x<p2.x);
}
int graham(Point pp[], int sum, Point res[]){
    int i, len1, k=0, top=1;
    sort(pp,pp+sum,cmp);
    res[0]=pp[0];
    res[1]=pp[1];
    res[2]=pp[2];
    for(i=2; i<sum; i++){
        while(top&&x_mult(pp[i],res[top],res[top-1])>=0)
            top--;
        res[++top]=pp[i];
    }
    len1=top; res[++top]=pp[sum-2];
    for(i=sum-3; i>=0; i--){
        while(top!=len1&&x_mult(pp[i],res[top],res[top-1])>=0)
            top--;
            res[++top]=pp[i];
    }
    return top;
}
double rotating_calipers(Point *ch,int sum){
    int i=0, j=1, k=2;
    ch[sum]=ch[0];
    double ans=x_mult(ch[1], ch[2], ch[0]);
    while(k){
        int ii=i, jj=j, kk=k;
        while(x_mult(ch[j], ch[(k+1)%sum], ch[i])>x_mult(ch[j], ch[k], ch[i])){
            k=(k+1)%sum;
            ans=max(ans, x_mult(ch[j], ch[k], ch[i]));
        }
        while(x_mult(ch[(j+1)%sum], ch[k], ch[i])>x_mult(ch[j], ch[k], ch[i])){
            j=(j+1)%sum;
            ans=max(ans, x_mult(ch[j], ch[k], ch[i]));
        }
        while(x_mult(ch[j], ch[k], ch[(i+1)%sum])>x_mult(ch[j], ch[k], ch[i])){
            i=(i+1)%sum;
            ans=max(ans, x_mult(ch[j], ch[k], ch[i]));
        }
        if(ii==i&&jj==j&&kk==k)
        k=(k+1)%sum;
    }
    return ans;
}

int main(){
    //freopen("1.txt", "r", stdin);
    while(scanf("%d", &n1)&&n1!=-1){
        for(int i=0; i<n1; i++)
        scanf("%d%d", &p1[i].x, &p1[i].y);
        n=graham(p1, n1, p);
        printf("%.2f\n", rotating_calipers(p, n)/2);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值