首先,下载数据集20news-bydate.tar.gz,在$MAHOUT_HOME下的 examples/bin/下建立work文件夹(mkdir /home/hadoop/mahout-distribution-0.4 /examples/bin/work/)将下载的数据集解压tar 20news-bydate.tar.gz,之后放到work文件夹下。
其次,产生Input数据集,即对训练数据集进行预处理,数据准备阶段,将各类中的数据进行分词处理,去掉标点及副词等,同时将各类中的文件读入到一个大文件中,使得每类最后只有一个文件包含起初所有的文件,mahout下处理的文件必须是SequenceFile格式的,还需要把txtfile转换成 sequenceFile。等处理完看结果时就明白了,
命令为:mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups -p /home/hadoop/mahout-distribution-0.4/examples/bin/work/20news-bydate-train -o /home/hadoop/mahout-distribution-0.4/examples/bin/work/bayes-train-input -a org.apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8
完毕后将work 下的bayes-train-input放到hadoop的分布式文件系统上的 20news-input,输入命令 hadoop dfs -put /home/hadoop/mahout-distribution-0.4/examples/bin/work/bayes-train-input 20news-input
第三,用处理好的训练数据集进行训练得出分类模型即中间结果,模型保存在分布式文件系统上,在mahout的目录下输入命令 mahout trainclassifier -i 20news-input -o newsmodel -type bayes -ng 3 -source hdfs
或者输入命令:hadoop jar $MAHOUT_HOME/mahout-examples-0.5-job.jar org.apache.mahout.classifier.bayes.TrainClassifier -i 20news-input -o newsmodel -type bayes -ng 3 -source hdfs
当然可以查看newsmodel里的内容时,先查看其里面都有什么,命令:hadoop fs -lsr /user/hadoop/newsmodel
将其导入到本地txt格式,进行查看,例如命令:mahout seqdumper -s /user/hadoop/newsmodel/trainer-tfIdf//trainer-tfIdf/part-00000 -o /home/hadoop/out/part-1
最后,用模型进行测试,输入命令:mahout testclassifier -m newsmodel -d 20news-input -type bayes -ng 3 -source hdfs -method mapreduce
转自:http://hi.baidu.com/bjwyl66/blog/item/32f0820d25ecfbf2ab6457f3.html