在Business Analysis中的标准Requirements Types

本文介绍了需求工程中的六大关键要素:业务需求、用户需求、功能需求、服务质量需求、假设与约束及实施需求。这些要素共同构成了从企业层面到具体解决方案层面的需求桥梁。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. [b]Business Requirements[/b]
较高层面上对企业的目标和需要做的陈述。
Business Requirements are higher-level statements of the goals, objectives, or needs
of the enterprise. They describe such things the reasons why a project is initiated, the
things that the project will achieve, and the metrics which will be used to measure its
success. They are detailed further in the Enterprise Analysis KA.
2.[b]User Requirements[/b] 用户要求
User Requirements are statements of the needs of a particular stakeholder or class of
stakeholders. They describe the needs that a given stakeholder has and how that
stakeholder will interact with a solution. User Requirements serve as a bridge
between Business Requirements and the various classes of solution requirements. They are gathered from stakeholders as described in the Requirements Elicitation KA
and documented using the techniques described in the Requirements Analysis and
Documentation KA.
3.[b]Functional Requirements[/b] describe the behavior and information that the solution
will manage. They describe capabilities the system will be able to perform in terms of
behaviors or operations – a specific system action or response. They are further
described in the Requirements Analysis and Documentation KA.
4. [b]Quality of Service Requirements [/b]capture conditions that do not directly relate to the
behavior or functionality of the solution, but rather describe environmental
conditions under which the solution must remain effective or qualities that the
systems must have. They are also known as [b]non-functional or supplementary requirements.[/b] They are further described in the Requirements Analysis and
Documentation KA.
5. [b]Assumptions and constraints[/b] identify aspects of the problem domain that are not
functional requirements of a solution, and will limit or impact the design of the
solution. They are further described in the Requirements Analysis and Documentation
KA.
6.[b]Implementation requirements[/b] describe capabilities that the solution must have in
order to facilitate transition from the current state of the enterprise to the desired
future state, but that will not be needed once that transition is complete. They are
further described in the Solution Assessment and Validation KA.
Sure, here are the steps along with code explanations: 1. Understand the business problem: This step involves understanding the problem statement and the objective of the competition. In the case of the Kaggle Forest Cover Type Prediction competition, the objective is to predict the type of forest cover (out of 7 possible types) based on various geographical features like elevation, slope, aspect, etc. 2. Get the data: The data for this competition can be downloaded from the Kaggle website. It contains both training and testing datasets. 3. Discover and visualize insights: In this step, we perform exploratory data analysis (EDA) to gain insights into the data. This involves plotting various visualizations like histograms, scatter plots, heat maps, etc. to understand the distribution of the data and the relationships between different features. 4. Prepare data for ML algorithms: In this step, we preprocess the data to make it suitable for machine learning algorithms. This involves tasks like handling missing values, encoding categorical variables, scaling numerical features, etc. 5. Select a model and train it: In this step, we select a suitable machine learning model based on the characteristics of the data and the problem statement. We then train the model on the preprocessed data. 6. Fine tune your model: In this step, we try to improve the performance of the model by fine-tuning its hyperparameters. This involves using techniques like grid search, random search, and Bayesian optimization to find the optimal set of hyperparameters. 7. Launch, monitor and maintain your system: This step is not relevant for this competition. Here is some sample Python code for the first few steps: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Load the data train_df = pd.read_csv('train.csv') test_df = pd.read_csv('test.csv') # Explore the data print(train_df.head()) # Visualize the target variable sns.countplot(x='Cover_Type', data=train_df) plt.show() # Preprocess the data from sklearn.preprocessing import StandardScaler # Drop unnecessary columns train_df.drop(['Id', 'Soil_Type7', 'Soil_Type15'], axis=1, inplace=True) test_df.drop(['Id', 'Soil_Type7', 'Soil_Type15'], axis=1, inplace=True) # Split the data into features and labels X_train = train_df.drop(['Cover_Type'], axis=1) y_train = train_df['Cover_Type'] # Scale the features scaler = StandardScaler() X_train = scaler.fit_transform(X_train) ``` Note that this code is just a sample and may need to be modified based on the specific requirements of the competition and the characteristics of the data.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值