【汉语拼音】lubangxing
【中文词条】鲁棒性
【外文词条】robustness
【作 者】钱唯德 郑大钟
控制系统在其特性或参数发生摄动时仍可使质量指针保持不变的性能。鲁棒性是英文robustness一词的音译﹐也可意译为稳健性。鲁棒性原是统计学中的一个专门术语﹐70年代初开始在控制理论的研究中流行起来﹐用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中﹐系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面﹐一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值)﹐另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此﹐鲁棒性已成为控制理论中的一个重要的研究课题﹐也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统﹐所涉及的领域包括稳定性﹑无静差性﹑适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系﹐内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。
结构渐近稳定性 以渐近稳定为性能指针的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的﹐并且对标称值的一个邻域内的每一种情况它也是渐近稳定的﹐则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外﹐还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件﹐可用代数的或几何的语言来表述﹐但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量﹐包括增益裕量和相角裕量﹐它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大﹐其特性或参数的允许摄动范围一般也越大﹐因此它的鲁棒性也越好。业已证明﹐线性二次型(LQ)最优控制系统具有十分良好的鲁棒性﹐其相角裕量至少为60°﹐并确保1/2到∞的增益裕量。
结构无静差性 以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指针的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节﹐即系统输出对参考输入的稳态跟踪误差等于零)﹐并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的﹐那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。用方程
N 1(D )()=0 N 2(D )0()=0
表示加于受控系统的扰动 ()和参考输入0()的动态模型﹐式中为微分算子﹐N 1(D )和 N 2(D )为D 的多项式。用1()和2()(为复数变量)分别表示 N 1(D )和N 2(D )的最小多项式﹐而用()表示1()和2()的最小公倍式。那么存在鲁棒调节器可使受控系统
T ()=U ()+M ()
=
(见多变量频域方法)实现结构无静差的充分必要条件是﹐控制向量的维数大于输出向量的维数﹐同时对代数方程()=0的所有根(=1﹐2﹐…﹐)矩阵U ()为满秩。对于可实现结构无静差的受控系统﹐一个动态补偿器
P ()ξ =-
=R ()
ξ 为补偿器的状态向量)能构成为它的鲁棒调节器的充分必要条件是﹐矩阵P ()的每一个元都可被()除尽﹐同时由受控系统和动态补偿器组成的死循环控制系统是结构渐近稳定的。在采用其它形式的数学描述时﹐鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成﹐一部分称为镇定补偿器﹐另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型﹐因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号﹐它们共同的动力学模型是一个积分器﹔对于呈斜坡直线变化的参考输入信号和呈阶跃变化的扰动信号﹐其共同的动力学模型是两个积分器的串接。
带有状态观测器的系统的鲁棒性 一般而言﹐在控制系统中引入状态观测器会使它的鲁棒性变坏﹐因此应尽可能避免。对于必须采用状态观测器的控制系统﹐当受控系统为最小相位系统时﹐可通过合理地设计观测器而使控制系统保持较好的鲁棒性。其原则是把观测器的一部分极点设计成恰好与所观测系统的零点相对消﹐而观测器的其它极点在满足抗干扰性要求的前提下应使其尽可能地远离虚轴。
【中文词条】鲁棒性
【外文词条】robustness
【作 者】钱唯德 郑大钟
控制系统在其特性或参数发生摄动时仍可使质量指针保持不变的性能。鲁棒性是英文robustness一词的音译﹐也可意译为稳健性。鲁棒性原是统计学中的一个专门术语﹐70年代初开始在控制理论的研究中流行起来﹐用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中﹐系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面﹐一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值)﹐另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此﹐鲁棒性已成为控制理论中的一个重要的研究课题﹐也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统﹐所涉及的领域包括稳定性﹑无静差性﹑适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系﹐内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。
结构渐近稳定性 以渐近稳定为性能指针的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的﹐并且对标称值的一个邻域内的每一种情况它也是渐近稳定的﹐则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外﹐还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件﹐可用代数的或几何的语言来表述﹐但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量﹐包括增益裕量和相角裕量﹐它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大﹐其特性或参数的允许摄动范围一般也越大﹐因此它的鲁棒性也越好。业已证明﹐线性二次型(LQ)最优控制系统具有十分良好的鲁棒性﹐其相角裕量至少为60°﹐并确保1/2到∞的增益裕量。
结构无静差性 以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指针的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节﹐即系统输出对参考输入的稳态跟踪误差等于零)﹐并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的﹐那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。用方程
N 1(D )()=0 N 2(D )0()=0
表示加于受控系统的扰动 ()和参考输入0()的动态模型﹐式中为微分算子﹐N 1(D )和 N 2(D )为D 的多项式。用1()和2()(为复数变量)分别表示 N 1(D )和N 2(D )的最小多项式﹐而用()表示1()和2()的最小公倍式。那么存在鲁棒调节器可使受控系统
T ()=U ()+M ()
=
(见多变量频域方法)实现结构无静差的充分必要条件是﹐控制向量的维数大于输出向量的维数﹐同时对代数方程()=0的所有根(=1﹐2﹐…﹐)矩阵U ()为满秩。对于可实现结构无静差的受控系统﹐一个动态补偿器
P ()ξ =-
=R ()
ξ 为补偿器的状态向量)能构成为它的鲁棒调节器的充分必要条件是﹐矩阵P ()的每一个元都可被()除尽﹐同时由受控系统和动态补偿器组成的死循环控制系统是结构渐近稳定的。在采用其它形式的数学描述时﹐鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成﹐一部分称为镇定补偿器﹐另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型﹐因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号﹐它们共同的动力学模型是一个积分器﹔对于呈斜坡直线变化的参考输入信号和呈阶跃变化的扰动信号﹐其共同的动力学模型是两个积分器的串接。
带有状态观测器的系统的鲁棒性 一般而言﹐在控制系统中引入状态观测器会使它的鲁棒性变坏﹐因此应尽可能避免。对于必须采用状态观测器的控制系统﹐当受控系统为最小相位系统时﹐可通过合理地设计观测器而使控制系统保持较好的鲁棒性。其原则是把观测器的一部分极点设计成恰好与所观测系统的零点相对消﹐而观测器的其它极点在满足抗干扰性要求的前提下应使其尽可能地远离虚轴。