高鲁棒性、高精度、实时性视觉SLAM系统研究

本文探讨了视觉SLAM技术在智能机器人、无人驾驶和增强现实领域的应用及其重要性。重点分析了国内外研究现状,包括特征点法和直接法的视觉SLAM,提出了高鲁棒性、高精度、实时性的视觉SLAM系统的关键技术,如特征检测与匹配、关键帧选取、建图和闭环检测。研究目标是融合不同方法,优化SLAM系统,并计划通过实验验证和数据集分析进行研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、   课题来源、目的及意义

近年来,智能机器人领域得到了世界各地研究者的关注,并将研究成果运用于制造业、农业、医疗、交通、服务、物流等行业。自主导航机器人是智能机器人的主要组成部分,机器人的自主导航与三个关键性技术密不可分:定位,建图,和导航。定位是指确定机器人在当前环境中的位姿,建图是指将观测得到的局部地图整合到全局一致的地图中,路径规划确定了进行导航的最佳路线。

定位与建图看起来是独立的,但是实际上,精确的定位依赖与当前地图的精度,而高精度地图的每个元素的构建都依赖于高精度的定位,定位与建图的相互依赖关系催生了SLAM技术,SLAM是simultaneous localization andmapping的缩写,意为同时定位与建图技术,SLAM技术的巨大发展,主要是因为以下应用场景:

1.     室内环境、室外GPS信号不好的区域、水下、太空等,没有先验地图,难以获得全球定位,但是需要根据周围环境构建局部地图,进行自主导航。

2.     有先验地图,但是无法获得自身相对于地图的位置,比如提前绘制了工厂的地图,关机重启后不知道当前的位置,用SLAM技术就可以重定位。

SLAM技术主要根据传感器的不同主要分为激光SLAM和视觉SLAM。机器人通过激光雷达来实现SLAM被称为激光SLAM,激光雷达价格较为昂贵,有效距离不够远,开阔场景下不适用。使用相机作为唯一感知环境的传感器,被称为视觉SLAM。由于相机具有成本低,轻,很容易放到商品硬件上的优点,且图像含有丰富的信息,视觉SLAM技术受到了更大的关注。根据采用的视觉传感器不同,可以将视觉SLAM主要分为三类:仅用一个相机作为唯一外部传感器的单目视觉SLAM;使用多个相机作为传感器的立体视觉SLAM,其中双目立体视觉的应用最多;基于单目相机与红外传感器结合构成的传感器的RGBD-SLAM。

高鲁棒性、高精度、实时性的视觉SLAM,对无人驾驶,增强现实等领域有着里程碑式的意义。比如:无人驾驶领域用视觉SLAM技术来实现对车辆周围环境的建图和定位,对目标物体的检测与追踪,高鲁棒性带来高安全性,精度对车距的控制、启停刹车有着重大影响,而实时性不好可能会发生卡顿,从而引发危险。

二、      国内外研究现状分析(在文献综述基础上凝练)

SLAM技术是一个典型的多学科交叉领域,其框架常常被分其前端与后端,前段与计算机视觉、信号处理交叉。后端与几何学,图论,优化理论,概率估计相关,所以一个SLAM专家常常要处理从传感器模型到系统集成的问题。对图像信息采用的方法不同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值