DTW——动态时间规整(附 python 代码)

基本原理

一目了然
在这里插入图片描述
在这里插入图片描述

优质代码

这段代码条例清晰、言简意赅,虽然效率有待提升,但仍然值得学习

def dtw_distance(ts_a, ts_b, d=lambda x,y: abs(x-y), mww=np.inf):
    """Computes dtw distance between two time series
    
    Args:
        ts_a: time series a
        ts_b: time series b
        d: distance function
        mww: max warping window, int, optional (default = infinity)
        
    Returns:
        dtw distance
    """
    
    # Create cost matrix via broadcasting with large int
    ts_a, ts_b = np.array(ts_a), np.array(ts_b)
    M, N = len(ts_a), len(ts_b)
    cost = np.ones((M, N))

    # Initialize the first row and column
    cost[0, 0] = d(ts_a[0], ts_b[0])
    for i in range(1, M):
        cost[i, 0] = cost[i-1, 0] + d(ts_a[i], ts_b[0])

    for j in range(1, N):
        cost[0, j] = cost[0, j-1] + d(ts_a[0], ts_b[j])

    # Populate rest of cost matrix within window
    for i in range(1, M):
        for j in range(max(1, i - mww), min(N, i + mww)):
            choices = cost[i-1, j-1], cost[i, j-1], cost[i-1, j]
            cost[i, j] = min(choices) + d(ts_a[i], ts_b[j])

    # Return DTW distance given window 
    return cost[-1, -1], _traceback(cost)
def _traceback(D):
    i, j = array(D.shape) - 1
    path = [(i,j)]
    while ((i > 0) or (j > 0)):
        back = argmin((D[i-1, j-1], D[i, j-1], D[i-1, j]))
        if (back == 0):
            i -= 1
            j -= 1
        elif (back == 1):
            j -= 1
        else:
            i -= 1
        path.append((i,j))
    return list(reversed(path))

结果可视化

比较信号
在这里插入图片描述
动态调整结果
在这里插入图片描述
画图代码

import matplotlib.pyplot as plt
import matplotlib as mpl

def plot_warping(s1, s2, path):
    """Plot the optimal warping between to sequences.
    :param s1: From sequence.
    :param s2: To sequence.
    :param path: Optimal warping path.
    """
    
    fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True, sharey=True)
    ax[0].plot(s1)
    ax[1].plot(s2)
    transFigure = fig.transFigure.inverted()
    lines = []
    line_options = {'linewidth': 0.5, 'color': 'orange', 'alpha': 0.8}
    for r_c, c_c in path:
        if r_c < 0 or c_c < 0:
            continue
        coord1 = transFigure.transform(ax[0].transData.transform([r_c, s1[r_c]]))
        coord2 = transFigure.transform(ax[1].transData.transform([c_c, s2[c_c]]))
        lines.append(mpl.lines.Line2D((coord1[0], coord2[0]), (coord1[1], coord2[1]),
                                      transform=fig.transFigure, **line_options))
    fig.lines = lines
    
    return fig, ax


s1 = [np.sin(i) for i in range(20)]
s2 = [np.sin(i+0.1+np.pi) for i in range(20)]
plt.plot(s1)
plt.plot(s2)

dis, path = dtw_distance(s1, s2)
plot_warping(s1, s2, path)

其它例子
在这里插入图片描述

相关优质博文:

  • https://www.cnblogs.com/xingshansi/p/6924911.html
  • https://blog.csdn.net/raym0ndkwan/article/details/45614813
  • https://github.com/wannesm/dtaidistance
  • https://www.cnblogs.com/ningjing213/p/10502519.html
在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。 这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和。 还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10 对应 ,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。 接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i] [j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i] [j];最后得到的output[5][5]就是我们所需要的DTW距离.
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值