直接定义
设 Γ\GammaΓ 是由集合X中一些子集所构成的集合族(也叫做集类),且满足下述条件:
(1)X∈ΓX∈\GammaX∈Γ;
(2)若 A∈гA∈гA∈г,则 AAA 的补集 Ac∈ΓA^c \in \GammaAc∈Γ;
(3)若 An∈Γ(N=1,2,…)A_n∈\Gamma (N=1,2,…)An∈Γ(N=1,2,…) 则 ∪An∈Γ∪A_n∈\Gamma∪An∈Γ ;
我们称 Γ\GammaΓ 是一个 σ\sigmaσ 代数。
间接定义
我们首先定义集代数,然后通过集代数定义 σ\sigmaσ 代数。
XXX 为集合,P(X)P(X)P(X) 为其幂集,ω\omegaω 是 P(X)P(X)P(X) 的子集,且满足
(1) X∈ωX\in \omegaX∈ω
(2) 如 A∈ωA \in \omegaA∈ω,则 Ac∈ωA^c \in \omegaAc∈ω
(3) 如 A∈ωA \in \omegaA∈ω,B∈ωB \in \omegaB∈ω,则 A∪B∈ωA∪B \in \omegaA∪B∈ω.
则称 ω\omegaω 为 XXX 上的集代数。
ω\omegaω 是 XXX 上的集代数,如 ω\omegaω 还满足:如果 Ai∈ω,i=1,2,3,…A_i∈ω,i=1,2,3,…Ai∈ω,i=1,2,3,… 则 ∪Ai∈ω∪A_i∈\omega∪Ai∈ω,
就称 ω\omegaω 是 XXX 上的 σ\sigmaσ代数