σ代数

本文介绍了σ代数的两种定义方式:直接定义和间接定义。直接定义从集合族出发,提出了构成σ代数的三个必要条件;间接定义则是先定义集代数,再通过补充条件得到σ代数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接定义

Γ\GammaΓ 是由集合X中一些子集所构成的集合族(也叫做集类),且满足下述条件:

(1)X∈ΓX∈\GammaXΓ
(2)若 A∈гA∈гAг,则 AAA 的补集 Ac∈ΓA^c \in \GammaAcΓ
(3)若 An∈Γ(N=1,2,…)A_n∈\Gamma (N=1,2,…)AnΓ(N=1,2,)∪An∈Γ∪A_n∈\GammaAnΓ

我们称 Γ\GammaΓ 是一个 σ\sigmaσ 代数。

间接定义

我们首先定义集代数,然后通过集代数定义 σ\sigmaσ 代数。
XXX 为集合,P(X)P(X)P(X) 为其幂集,ω\omegaωP(X)P(X)P(X) 的子集,且满足

(1) X∈ωX\in \omegaXω
(2) 如 A∈ωA \in \omegaAω,则 Ac∈ωA^c \in \omegaAcω
(3) 如 A∈ωA \in \omegaAωB∈ωB \in \omegaBω,则 A∪B∈ωA∪B \in \omegaABω.

则称 ω\omegaωXXX 上的集代数。

ω\omegaωXXX 上的集代数,如 ω\omegaω 还满足:如果 Ai∈ω,i=1,2,3,…A_i∈ω,i=1,2,3,…Aiωi=1,2,3,∪Ai∈ω∪A_i∈\omegaAiω

就称 ω\omegaωXXX 上的 σ\sigmaσ代数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值