实变函数论——sigma代数(域)——习题练习

文章阐述了如何证明一个特定类型的域是σ域,涉及可数不交并的性质以及单点集对σ域构造的影响。
摘要由CSDN通过智能技术生成

题1 对可数不交并封闭的域(代数)是 σ \sigma σ域(代数)

Suppose A \mathcal{A} A is a field and suppose also that A \mathcal{A} A has the property that it is closed under countable disjoint unions. Show A \mathcal{A} A is a σ \sigma σ-field.

∵ A 是域 \because \mathcal{A}是域 A是域
∴ A 对补封闭,且 Ω ∈ A \therefore \mathcal{A}对补封闭,且\Omega \in \mathcal{A} A对补封闭,且ΩA
所以只需证明 A \mathcal{A} A对可数并封闭。
A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,, A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Aki=1k1Ai,那么 B k B_k Bk彼此之间互不相交,且 ⋃ i = 1 ∞ B i = ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}B_i=\bigcup_{i=1}^{\infty}A_i i=1Bi=i=1Ai,结论得证

思路

构建不相交的集合:令 A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,, A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Aki=1k1Ai,那么 B k B_k Bk彼此之间互不相交,且 ⋃ i = 1 ∞ B i = ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}B_i=\bigcup_{i=1}^{\infty}A_i i=1Bi=i=1Ai

题2 单点集生成的 σ \sigma σ域(代数)

Let Q Q Q be a non-empty set and let C \mathcal{C} C be all one point subsets. Show that σ ( C ) = { A ⊂ Ω : A  is countable } ⋃ { A ⊂ Ω : A c  is countable } . \sigma(\mathcal{C}) =\left\{A \subset \Omega: A \text{ is countable}\right\} \bigcup\left\{A\subset \Omega: A^c \text{ is countable}\right\}. σ(C)={AΩ:A is countable}{AΩ:Ac is countable}.

思路

A = { A ⊂ Ω : A  is countable } ⋃ { A ⊂ Ω : A c  is countable } . \mathcal{A} =\left\{A \subset \Omega: A \text{ is countable}\right\} \bigcup\left\{A\subset \Omega: A^c \text{ is countable}\right\}. A={AΩ:A is countable}{AΩ:Ac is countable}.

  • 先证 A \mathcal{A} A σ \sigma σ
  • 再证 C ∈ A \mathcal{C}\in \mathcal{A} CA,从而 σ ( C ) ⊂ A \sigma(\mathcal{C})\subset \mathcal{A} σ(C)A
  • 最后证明 A ⊂ σ ( C ) \mathcal{A}\subset\sigma(\mathcal{C}) Aσ(C)

A \mathcal{A} A σ \sigma σ

  • ∵ Ω c = ϕ 是可数集 \because \Omega^c=\phi是可数集 Ωc=ϕ是可数集
    ∴ Ω ∈ A \therefore\Omega \in \mathcal{A} ΩA

  • A ∈ A A\in \mathcal{A} AA, 那么若 A A A是可数集,则 ( A c ) c = A (A^c)^c=A (Ac)c=A是可数集;若 A c A^c Ac是可数集,那么 A c ∈ A A^c\in\mathcal{A} AcA

  • A 1 , A 2 , … ∈ A A_1,A_2,\ldots \in \mathcal{A} A1,A2,A,考虑两种情况:
    ①若 A 1 , A 2 , … A_1,A_2,\ldots A1,A2中至少有一个可数集,那么 ⋂ i = 1 ∞ A i \bigcap_{i=1}^{\infty}A_i i=1Ai是可数集
    ②若 A 1 , A 2 , … A_1,A_2,\ldots A1,A2中没有可数集,那么 A 1 c , A 2 c , … A_1^c,A_2^c,\ldots A1c,A2c是可数集,所以 ⋃ i = 1 ∞ A i c \bigcup_{i=1}^{\infty}A_i^c i=1Aic是可数集,又因为 ( ⋂ i = 1 ∞ A i ) c = ⋃ i = 1 ∞ A i c (\bigcap_{i=1}^{\infty}A_i)^c=\bigcup_{i=1}^{\infty}A_i^c (i=1Ai)c=i=1Aic
    所以 ⋂ i = 1 ∞ A i ∈ A \bigcap_{i=1}^{\infty}A_i\in\mathcal{A} i=1AiA
    所以, A \mathcal{A} A σ \sigma σ

C ∈ A \mathcal{C}\in \mathcal{A} CA

由于 C \mathcal{C} C是单点集,所以 C \mathcal{C} C可数集,所以 C ∈ A \mathcal{C}\in \mathcal{A} CA。根据最小 σ \sigma σ域的定义,我们有 σ ( C ) ⊂ A \sigma(\mathcal{C})\subset \mathcal{A} σ(C)A

A ⊂ σ ( C ) \mathcal{A}\subset\sigma(\mathcal{C}) Aσ(C)

设集合 A ∈ A A\in\mathcal{A} AA,那么 A A A可数或者 A c A^c Ac可数。

  • A A A可数,那么 A 可以写成 A = { x 1 , x 2 , x 3 , … } = ⋃ i = 1 ∞ { x i } A可以写成A=\left\{x_1,x_2,x_3,\ldots\right\}=\bigcup_{i=1}^{\infty}\left\{x_i\right\} A可以写成A={x1,x2,x3,}=i=1{xi}
    ∵ { x i } ∈ C \because \left\{x_i\right\}\in \mathcal{C} {xi}C
    ∴ { x i } ∈ σ ( C ) \therefore \left\{x_i\right\}\in\sigma(\mathcal{C}) {xi}σ(C)
    ∴ A ∈ σ ( C ) \therefore A\in\sigma(\mathcal{C}) Aσ(C)
  • A c A^c Ac可数,那么 A c 可以写成 A c = { x 1 , x 2 , x 3 , … } = ⋃ i = 1 ∞ { x i } A^c可以写成A^c=\left\{x_1,x_2,x_3,\ldots\right\}=\bigcup_{i=1}^{\infty}\left\{x_i\right\} Ac可以写成Ac={x1,x2,x3,}=i=1{xi}
    ∴ A = ( A c ) c = ⋂ i = 1 ∞ { x i } c \therefore A=(A^c)^c=\bigcap_{i=1}^{\infty}\left\{x_i\right\}^c A=(Ac)c=i=1{xi}c
    ∵ { x i } ∈ σ ( C ) \because \left\{x_i\right\}\in\sigma(\mathcal{C}) {xi}σ(C)
    ∴ { x i } c ∈ σ ( C ) \therefore \left\{x_i\right\}^c\in\sigma(\mathcal{C}) {xi}cσ(C)
    ∴ A ∈ σ ( C ) \therefore A\in\sigma(\mathcal{C}) Aσ(C)

综上所述, A ⊂ σ ( C ) \mathcal{A}\subset\sigma(\mathcal{C}) Aσ(C)
因此, A = σ ( C ) \mathcal{A}=\sigma(\mathcal{C}) A=σ(C)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值