题1 对可数不交并封闭的域(代数)是 σ \sigma σ域(代数)
Suppose A \mathcal{A} A is a field and suppose also that A \mathcal{A} A has the property that it is closed under countable disjoint unions. Show A \mathcal{A} A is a σ \sigma σ-field.
解
∵ A 是域 \because \mathcal{A}是域 ∵A是域
∴ A 对补封闭,且 Ω ∈ A \therefore \mathcal{A}对补封闭,且\Omega \in \mathcal{A} ∴A对补封闭,且Ω∈A
所以只需证明 A \mathcal{A} A对可数并封闭。
令 A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,…,为 A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Ak−⋃i=1k−1Ai,那么 B k B_k Bk彼此之间互不相交,且 ⋃ i = 1 ∞ B i = ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}B_i=\bigcup_{i=1}^{\infty}A_i ⋃i=1∞Bi=⋃i=1∞Ai,结论得证
思路
构建不相交的集合:令 A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,…,为 A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Ak−⋃i=