题1 对可数不交并封闭的域(代数)是 σ \sigma σ域(代数)
Suppose A \mathcal{A} A is a field and suppose also that A \mathcal{A} A has the property that it is closed under countable disjoint unions. Show A \mathcal{A} A is a σ \sigma σ-field.
解
∵
A
是域
\because \mathcal{A}是域
∵A是域
∴
A
对补封闭,且
Ω
∈
A
\therefore \mathcal{A}对补封闭,且\Omega \in \mathcal{A}
∴A对补封闭,且Ω∈A
所以只需证明
A
\mathcal{A}
A对可数并封闭。
令
A
1
,
A
2
,
…
,
A_1,A_2,\ldots,
A1,A2,…,为
A
\mathcal{A}
A中的集合,令
B
k
=
A
k
−
⋃
i
=
1
k
−
1
A
i
B_k=A_k-\bigcup_{i=1}^{k-1}A_i
Bk=Ak−⋃i=1k−1Ai,那么
B
k
B_k
Bk彼此之间互不相交,且
⋃
i
=
1
∞
B
i
=
⋃
i
=
1
∞
A
i
\bigcup_{i=1}^{\infty}B_i=\bigcup_{i=1}^{\infty}A_i
⋃i=1∞Bi=⋃i=1∞Ai,结论得证
思路
构建不相交的集合:令 A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,…,为 A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Ak−⋃i=1k−1Ai,那么 B k B_k Bk彼此之间互不相交,且 ⋃ i = 1 ∞ B i = ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}B_i=\bigcup_{i=1}^{\infty}A_i ⋃i=1∞Bi=⋃i=1∞Ai
题2 单点集生成的 σ \sigma σ域(代数)
Let Q Q Q be a non-empty set and let C \mathcal{C} C be all one point subsets. Show that σ ( C ) = { A ⊂ Ω : A is countable } ⋃ { A ⊂ Ω : A c is countable } . \sigma(\mathcal{C}) =\left\{A \subset \Omega: A \text{ is countable}\right\} \bigcup\left\{A\subset \Omega: A^c \text{ is countable}\right\}. σ(C)={A⊂Ω:A is countable}⋃{A⊂Ω:Ac is countable}.
思路
令 A = { A ⊂ Ω : A is countable } ⋃ { A ⊂ Ω : A c is countable } . \mathcal{A} =\left\{A \subset \Omega: A \text{ is countable}\right\} \bigcup\left\{A\subset \Omega: A^c \text{ is countable}\right\}. A={A⊂Ω:A is countable}⋃{A⊂Ω:Ac is countable}.
- 先证 A \mathcal{A} A是 σ \sigma σ域
- 再证 C ∈ A \mathcal{C}\in \mathcal{A} C∈A,从而 σ ( C ) ⊂ A \sigma(\mathcal{C})\subset \mathcal{A} σ(C)⊂A
- 最后证明 A ⊂ σ ( C ) \mathcal{A}\subset\sigma(\mathcal{C}) A⊂σ(C)
解
证 A \mathcal{A} A是 σ \sigma σ域
-
∵ Ω c = ϕ 是可数集 \because \Omega^c=\phi是可数集 ∵Ωc=ϕ是可数集
∴ Ω ∈ A \therefore\Omega \in \mathcal{A} ∴Ω∈A -
设 A ∈ A A\in \mathcal{A} A∈A, 那么若 A A A是可数集,则 ( A c ) c = A (A^c)^c=A (Ac)c=A是可数集;若 A c A^c Ac是可数集,那么 A c ∈ A A^c\in\mathcal{A} Ac∈A
-
设 A 1 , A 2 , … ∈ A A_1,A_2,\ldots \in \mathcal{A} A1,A2,…∈A,考虑两种情况:
①若 A 1 , A 2 , … A_1,A_2,\ldots A1,A2,…中至少有一个可数集,那么 ⋂ i = 1 ∞ A i \bigcap_{i=1}^{\infty}A_i ⋂i=1∞Ai是可数集
②若 A 1 , A 2 , … A_1,A_2,\ldots A1,A2,…中没有可数集,那么 A 1 c , A 2 c , … A_1^c,A_2^c,\ldots A1c,A2c,…是可数集,所以 ⋃ i = 1 ∞ A i c \bigcup_{i=1}^{\infty}A_i^c ⋃i=1∞Aic是可数集,又因为 ( ⋂ i = 1 ∞ A i ) c = ⋃ i = 1 ∞ A i c (\bigcap_{i=1}^{\infty}A_i)^c=\bigcup_{i=1}^{\infty}A_i^c (i=1⋂∞Ai)c=i=1⋃∞Aic
所以 ⋂ i = 1 ∞ A i ∈ A \bigcap_{i=1}^{\infty}A_i\in\mathcal{A} ⋂i=1∞Ai∈A
所以, A \mathcal{A} A是 σ \sigma σ域
C ∈ A \mathcal{C}\in \mathcal{A} C∈A
由于 C \mathcal{C} C是单点集,所以 C \mathcal{C} C可数集,所以 C ∈ A \mathcal{C}\in \mathcal{A} C∈A。根据最小 σ \sigma σ域的定义,我们有 σ ( C ) ⊂ A \sigma(\mathcal{C})\subset \mathcal{A} σ(C)⊂A。
A ⊂ σ ( C ) \mathcal{A}\subset\sigma(\mathcal{C}) A⊂σ(C)
设集合 A ∈ A A\in\mathcal{A} A∈A,那么 A A A可数或者 A c A^c Ac可数。
- 若
A
A
A可数,那么
A
可以写成
A
=
{
x
1
,
x
2
,
x
3
,
…
}
=
⋃
i
=
1
∞
{
x
i
}
A可以写成A=\left\{x_1,x_2,x_3,\ldots\right\}=\bigcup_{i=1}^{\infty}\left\{x_i\right\}
A可以写成A={x1,x2,x3,…}=⋃i=1∞{xi}
∵ { x i } ∈ C \because \left\{x_i\right\}\in \mathcal{C} ∵{xi}∈C
∴ { x i } ∈ σ ( C ) \therefore \left\{x_i\right\}\in\sigma(\mathcal{C}) ∴{xi}∈σ(C)
∴ A ∈ σ ( C ) \therefore A\in\sigma(\mathcal{C}) ∴A∈σ(C) - 若
A
c
A^c
Ac可数,那么
A
c
可以写成
A
c
=
{
x
1
,
x
2
,
x
3
,
…
}
=
⋃
i
=
1
∞
{
x
i
}
A^c可以写成A^c=\left\{x_1,x_2,x_3,\ldots\right\}=\bigcup_{i=1}^{\infty}\left\{x_i\right\}
Ac可以写成Ac={x1,x2,x3,…}=⋃i=1∞{xi}
∴ A = ( A c ) c = ⋂ i = 1 ∞ { x i } c \therefore A=(A^c)^c=\bigcap_{i=1}^{\infty}\left\{x_i\right\}^c ∴A=(Ac)c=⋂i=1∞{xi}c
∵ { x i } ∈ σ ( C ) \because \left\{x_i\right\}\in\sigma(\mathcal{C}) ∵{xi}∈σ(C)
∴ { x i } c ∈ σ ( C ) \therefore \left\{x_i\right\}^c\in\sigma(\mathcal{C}) ∴{xi}c∈σ(C)
∴ A ∈ σ ( C ) \therefore A\in\sigma(\mathcal{C}) ∴A∈σ(C)
综上所述,
A
⊂
σ
(
C
)
\mathcal{A}\subset\sigma(\mathcal{C})
A⊂σ(C)
因此,
A
=
σ
(
C
)
\mathcal{A}=\sigma(\mathcal{C})
A=σ(C)