实变函数论——sigma代数(域)——习题练习

文章阐述了如何证明一个特定类型的域是σ域,涉及可数不交并的性质以及单点集对σ域构造的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题1 对可数不交并封闭的域(代数)是 σ \sigma σ域(代数)

Suppose A \mathcal{A} A is a field and suppose also that A \mathcal{A} A has the property that it is closed under countable disjoint unions. Show A \mathcal{A} A is a σ \sigma σ-field.

∵ A 是域 \because \mathcal{A}是域 A是域
∴ A 对补封闭,且 Ω ∈ A \therefore \mathcal{A}对补封闭,且\Omega \in \mathcal{A} A对补封闭,且ΩA
所以只需证明 A \mathcal{A} A对可数并封闭。
A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,, A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Aki=1k1Ai,那么 B k B_k Bk彼此之间互不相交,且 ⋃ i = 1 ∞ B i = ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}B_i=\bigcup_{i=1}^{\infty}A_i i=1Bi=i=1Ai,结论得证

思路

构建不相交的集合:令 A 1 , A 2 , … , A_1,A_2,\ldots, A1,A2,, A \mathcal{A} A中的集合,令 B k = A k − ⋃ i = 1 k − 1 A i B_k=A_k-\bigcup_{i=1}^{k-1}A_i Bk=Aki=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值