构造极限环

在极坐标下容易想到,使半径收敛到常数 R R R 即可
r ˙ = − r ( r 2 − R 2 ) θ ˙ = ω \dot{r} = -r(r^2-R^2)\\ \dot{\theta} = \omega r˙=r(r2R2)θ˙=ω

其中 R , ω R,\omega R,ω 为极限环的半径和角速度

转化成直角坐标:
x ˙ = ( r cos ⁡ θ ) ′ = r ˙ cos ⁡ θ − r sin ⁡ θ θ ˙ = − r ( r 2 − R 2 ) cos ⁡ θ − r ω sin ⁡ θ = − x ( x 2 + y 2 − R 2 ) − ω y \begin{aligned} \dot{x} &= (r\cos\theta)' = \dot{r}\cos\theta - r\sin\theta\dot{\theta}\\ &=-r(r^2-R^2)\cos\theta- r \omega \sin\theta \\ &= -x(x^2+y^2-R^2) - \omega y \end{aligned} x˙=(rcosθ)=r˙cosθrsinθθ˙=r(r2R2)cosθrωsinθ=x(x2+y2R2)ωy y ˙ = ( r sin ⁡ θ ) ′ = r ˙ sin ⁡ θ + r cos ⁡ θ θ ˙ = − r ( r 2 − R 2 ) sin ⁡ θ + r ω cos ⁡ θ = − y ( x 2 + y 2 − R 2 ) + ω x \begin{aligned} \dot{y} &= (r\sin\theta)' = \dot{r}\sin\theta + r\cos\theta\dot{\theta}\\ &= -r(r^2-R^2)\sin\theta + r \omega \cos\theta \\ &= -y(x^2+y^2-R^2) + \omega x \end{aligned} y˙=(rsinθ)=r˙sinθ+rcosθθ˙=r(r2R2)sinθ+rωcosθ=y(x2+y2R2)+ωx

x ˙ = − x ( x 2 + y 2 − R 2 ) − ω y y ˙ = − y ( x 2 + y 2 − R 2 ) + ω x \begin{aligned} \dot{x} &= -x(x^2+y^2-R^2) - \omega y\\ \dot{y} &= - y(x^2+y^2-R^2) + \omega x \end{aligned} x˙y˙=x(x2+y2R2)ωy=y(x2+y2R2)+ωx

不妨令 R = 1 , ω = 1 R=1,\omega=1 R=1,ω=1,用 matlab 画相图如下:

clc;clear;close;
[x,y]=meshgrid(linspace(-3,3));
h=streamslice(x,y, -y-x.*(x.^2+y.^2-1), x -y.*(x.^2+y.^2-1));
title('Limit Circle')
xlabel('x');ylabel('y');
xlim([-3,3]);ylim([-3,3]);
set(h,'Color','k')
axis equal
hold on
theta=0:pi/30:2*pi;
x1=cos(theta);y1=sin(theta);
plot(x1,y1,'r--')

在这里插入图片描述

clc;clear;close;
[x,y]=meshgrid(-1.5:0.2:1.5,-1.5:0.2:1.5);
u=-y-x.*(x.^2+y.^2-1);
v=x-y.*(x.^2+y.^2-1); 
hadl=quiver(x,y,u,v)
title('Limit Circle')
set(hadl,'Color','k')
axis equal
xlabel('x');ylabel('y');
xlim([-1.5,1.5]);ylim([-1.5,1.5]);
hold on
theta=0:pi/30:2*pi;
x1=cos(theta);y1=sin(theta);
plot(x1,y1,'r--')

在这里插入图片描述

极限的置信域通常是在研究动态系统稳定性和混沌行为时用来描述系统可能长期行为的数学工具,特别是在吸引子理论中。置信域的绘制涉及到确定系统的吸引子(如极限)周围的区域,在这个区域内,初始条件的轨迹最终都会聚集到极限上。 以下是绘制极限置信域的一般步骤: 1. **确定系统方程**:首先,你需要了解所研究的动态系统的微分方程或迭代映射的形式。 2. **寻找稳定解**:找到极限对应的解,这可能是通过数值方法(例如,欧拉法或龙格-库塔方法)或分析方法(如Lyapunov函数分析)。 3. **稳定性分析**:使用中心稳定法或Lyapunov指数等方法检查极限是否是稳定的,以及其稳定性类型(如周期稳定、渐近稳定或混沌)。 4. **构造邻域**:基于稳定性分析的结果,选择一个足够小但包含极限的邻域。这个邻域应该仅包含极限,没有其他吸引子。 5. **绘制轨迹**:用数值方法模拟系统在邻域内的演化,记录一系列的点,这些点会逐渐接近并绕着极限运动。 6. **确定置信域**:根据模拟结果,描绘出一个集合,表示在给定的时间尺度内,大部分初始条件都会落在这个区域,并最终趋近于极限。 7. **可视化**:使用图表软件(如Matplotlib、Python的Scipy包或Mathematica)将这些轨迹和置信域绘制成二维或三维图像,以便清晰地展示系统的行为。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值