构造极限环

在极坐标下容易想到,使半径收敛到常数 R R R 即可
r ˙ = − r ( r 2 − R 2 ) θ ˙ = ω \dot{r} = -r(r^2-R^2)\\ \dot{\theta} = \omega r˙=r(r2R2)θ˙=ω

其中 R , ω R,\omega R,ω 为极限环的半径和角速度

转化成直角坐标:
x ˙ = ( r cos ⁡ θ ) ′ = r ˙ cos ⁡ θ − r sin ⁡ θ θ ˙ = − r ( r 2 − R 2 ) cos ⁡ θ − r ω sin ⁡ θ = − x ( x 2 + y 2 − R 2 ) − ω y \begin{aligned} \dot{x} &= (r\cos\theta)' = \dot{r}\cos\theta - r\sin\theta\dot{\theta}\\ &=-r(r^2-R^2)\cos\theta- r \omega \sin\theta \\ &= -x(x^2+y^2-R^2) - \omega y \end{aligned} x˙=(rcosθ)=r˙cosθrsinθθ˙=r(r2R2)cosθrωsinθ=x(x2+y2R2)ωy y ˙ = ( r sin ⁡ θ ) ′ = r ˙ sin ⁡ θ + r cos ⁡ θ θ ˙ = − r ( r 2 − R 2 ) sin ⁡ θ + r ω cos ⁡ θ = − y ( x 2 + y 2 − R 2 ) + ω x \begin{aligned} \dot{y} &= (r\sin\theta)' = \dot{r}\sin\theta + r\cos\theta\dot{\theta}\\ &= -r(r^2-R^2)\sin\theta + r \omega \cos\theta \\ &= -y(x^2+y^2-R^2) + \omega x \end{aligned} y˙=(rsinθ)=r˙sinθ+rcosθθ˙=r(r2R2)sinθ+rωcosθ=y(x2+y2R2)+ωx

x ˙ = − x ( x 2 + y 2 − R 2 ) − ω y y ˙ = − y ( x 2 + y 2 − R 2 ) + ω x \begin{aligned} \dot{x} &= -x(x^2+y^2-R^2) - \omega y\\ \dot{y} &= - y(x^2+y^2-R^2) + \omega x \end{aligned} x˙y˙=x(x2+y2R2)ωy=y(x2+y2R2)+ωx

不妨令 R = 1 , ω = 1 R=1,\omega=1 R=1,ω=1,用 matlab 画相图如下:

clc;clear;close;
[x,y]=meshgrid(linspace(-3,3));
h=streamslice(x,y, -y-x.*(x.^2+y.^2-1), x -y.*(x.^2+y.^2-1));
title('Limit Circle')
xlabel('x');ylabel('y');
xlim([-3,3]);ylim([-3,3]);
set(h,'Color','k')
axis equal
hold on
theta=0:pi/30:2*pi;
x1=cos(theta);y1=sin(theta);
plot(x1,y1,'r--')

在这里插入图片描述

clc;clear;close;
[x,y]=meshgrid(-1.5:0.2:1.5,-1.5:0.2:1.5);
u=-y-x.*(x.^2+y.^2-1);
v=x-y.*(x.^2+y.^2-1); 
hadl=quiver(x,y,u,v)
title('Limit Circle')
set(hadl,'Color','k')
axis equal
xlabel('x');ylabel('y');
xlim([-1.5,1.5]);ylim([-1.5,1.5]);
hold on
theta=0:pi/30:2*pi;
x1=cos(theta);y1=sin(theta);
plot(x1,y1,'r--')

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值