第三十二讲 极限环

一,预备知识:
非线性一阶微分自治方程组的一般形式:
{ x ′ = f ( x , y ) y ′ = g ( x , y ) \left\{\begin{matrix}{x}'=f(x,y)\\ {y}'=g(x,y)\end{matrix}\right. {x=f(x,y)y=g(x,y)
等式右边不显含变量t
等式右边是非线性函数(如三角函数、二次项)

速度场: F ⃗ = f i ^ + g j ^ = x ′ i ^ + y ′ j ^ \vec{F}=f\widehat{i}+g\widehat{j}={x}'\widehat{i}+{y}'\widehat{j} F =fi +gj =xi +yj
(多变量微积分第十二讲有详解)

方程组的解 [ x ( t ) y ( t ) ] \begin{bmatrix}x(t)\\ y(t)\end{bmatrix} [x(t)y(t)]即速度场 F ⃗ \vec{F} F 的轨迹

方程组 [ x ′ y ′ ] \begin{bmatrix}{x}'\\ {y}'\end{bmatrix} [xy]即速度场 F ⃗ \vec{F} F 轨迹上的速度向量

临界点(驻点) [ x = x 0 y = y 0 ] \begin{bmatrix}x=x_{0}\\ y=y_{0}\end{bmatrix} [x=x0y=y0]是常数解,从场的角度看,他们是 F ⃗ = 0 \vec{F}=0 F =0的地方,或者说速度向量 [ x 0 ′ = 0 y 0 ′ = 0 ] \begin{bmatrix}{x}'_{0}=0\\ {y}'_{0}=0\end{bmatrix} [x0=0y0=0]的地方

二,闭合轨迹:
在这里插入图片描述
如图,闭合轨迹是一个周期性回到原始状态的方程组。
例如: { x ′ = y y ′ = − x \left\{\begin{matrix}{x}'=y\\ {y}'=-x\end{matrix}\right. {x=yy=x
矩阵化: [ x ′ y ′ ] = [ 0 1 − 1 0 ] [ x y ] \begin{bmatrix}{x}'\\ {y}'\end{bmatrix}=\begin{bmatrix}0 & 1\\ -1 & 0\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} [xy]=[0110][xy]
特征值: λ = ± i \lambda =\pm i λ=±i
通解: [ x y ] = c 1 [ c o s ( t ) − s i n ( t ) ] + c 2 [ s i n ( t ) c o s ( t ) ] \begin{bmatrix}x\\ y\end{bmatrix}=c_{1}\begin{bmatrix}cos(t)\\ -sin(t)\end{bmatrix}+c_{2}\begin{bmatrix}sin(t)\\ cos(t)\end{bmatrix} [xy]=c1[cos(t)sin(t)]+c2[sin(t)cos(t)]
图解:
在这里插入图片描述
三,极限环:
在这里插入图片描述
如图,极限环是一个闭合轨迹,并且是唯一且稳定的环。周围的轨迹(蓝色线)螺旋靠近,但不与极限环相交。稳定性是指周围的轨迹,无论是从外面还是从里面出发,最终都会靠近极限环。
极限环是简单曲线,即曲线不和自己相交。因为如果相交,速度向量就不是唯一的了。

物理含义:极限环表示自然界里一些有运动周期的系统,即便受到干扰,也会逐渐回到原先的周期状态。比如,呼吸的频率,即使在某一时间可以控制改变呼吸的频率,但当不去控制的时候,就会自然变回原来的频率。人血液中各种荷尔蒙和二氧化碳的水平,让会使人的呼吸回到自然状态。

四,极限环存在性的问题:
判断是否存在:目前还没有办法判断一个方程组是否有极限环。庞加莱-本迪克松定理已经过时,找极限环困难的地方是:你不知道在什么地方找它们,除非方程组背后的物理系统暗示存在某种周期性的现象。因此目前找极限环的方法是:用计算机搜索,并由物理意义指引。

判断是否不存在:
本迪克松准则:如果D是平面的一个区域,f(x,y)和g(x,y)都是连续函数,散度 d i v F ⃗ = f x + g y ≠ 0 div\vec{F}=f_{x}+g_{y}\neq 0 divF =fx+gy̸=0,那么区域D内不存在极限环,也不存在闭合轨迹。
例如: { x ′ = x 3 + y 3 y ′ = 3 x + y 3 + 2 y \left\{\begin{matrix}{x}'=x^{3}+y^{3}\\ {y}'=3x+y^{3}+2y\end{matrix}\right. {x=x3+y3y=3x+y3+2y
计算 d i v F ⃗ = 3 x 2 + 3 y 2 + 2 ≠ 0 div\vec{F}=3x^{2}+3y^{2}+2\neq 0 divF =3x2+3y2+2̸=0
因此在x-y平面上,不存在闭合轨迹。
反证法证明本迪克松准则:
在这里插入图片描述
如图,假设区域D内,散度 d i v F ⃗ ≠ 0 div\vec{F}\neq 0 divF ̸=0存在一个闭合轨迹C,闭合轨迹内部记为R, n ^ \widehat{n} n 表示单位法向量。
计算这条曲线的线积分( F ⃗ \vec{F} F 通过C的通量积分): ∮ C F ⃗ ⋅ n ^ d s \oint_{C}\vec{F}\cdot \widehat{n}ds CF n ds
因为 F ⃗ \vec{F} F 切于曲线,而 n ^ \widehat{n} n 垂直于曲线,所以 ∮ C F ⃗ ⋅ n ^ d s = 0 \oint_{C}\vec{F}\cdot \widehat{n}ds=0 CF n ds=0
格林定理: ∮ C F ⃗ ⋅ n ^ d s = ∬ R d i v F ⃗ d A \oint_{C}\vec{F}\cdot \widehat{n}ds=\iint_{R}div\vec{F}dA CF n ds=RdivF dA
因此: ∬ R d i v F ⃗ d A = 0 \iint_{R}div\vec{F}dA=0 RdivF dA=0
因为假设区域D内,散度 d i v F ⃗ ≠ 0 div\vec{F}\neq 0 divF ̸=0,所以在R范围内, d i v F ⃗ div\vec{F} divF 要么都>0,要么都<0,不存在有些>0有些<0的情况(这种情况会在正值和负值之间产生 d i v F ⃗ = 0 div\vec{F}=0 divF =0的点)。
因此: ∬ R d i v F ⃗ d A \iint_{R}div\vec{F}dA RdivF dA要么>0,要么<0
两个结论矛盾,证明散度 d i v F ⃗ ≠ 0 div\vec{F}\neq 0 divF ̸=0不存在一个闭合轨迹C

临界点准则
例如,判断方程组 { x ′ = x 2 + y 2 + 1 y ′ = x 2 − y 2 \left\{\begin{matrix}{x}&#x27;=x^{2}+y^{2}+1\\ {y}&#x27;=x^{2}-y^{2}\end{matrix}\right. {x=x2+y2+1y=x2y2是否存在极限环
利用本迪克松准则,计算 d i v F ⃗ = 2 x + 2 y div\vec{F}=2x+2y divF =2x+2y,在y=x这条线上, d i v F ⃗ = 0 div\vec{F}=0 divF =0
依据此准则,可以判断在不含y=x这条线的区域不存在闭合轨迹,但却不能判断包含y=x这条线相交的区域也不存在闭合曲线,因为有些地方 d i v F ⃗ = 0 div\vec{F}=0 divF =0
临界点准则:假设在x-y平面D区域内,存在一个闭合轨迹C,则在闭合轨迹内部R某处必定存在一个临界点。因此,如果D区域内没有临界点,则区域内没有闭合轨迹,更没有极限环。
因为 x ′ = x 2 + y 2 + 1 ≠ 0 {x}&#x27;=x^{2}+y^{2}+1\neq 0 x=x2+y2+1̸=0,所以不存在临界点。
因此没有极限环。

  • 10
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作者: 韩茂安 出版社: 科学出版社 出版年: 2013-1 页数: 348 定价: 108.00元 ISBN: 9787030361400 内容简介 · · · · · · 作者十多年来一直坚持极限的专题研究,在Hopf分支、同宿分支等多个方面建立了很有特色的研究方法,既有一般理论和方法,又有对多项式系统等众多应用。本书意在将作者及其合作者在极限方面的研究成果进行系统总结,主要内容包括极限的Hopf分支、同宿分支、异宿分支、含有幂零奇点的极限分支、多项式系统极限个数下界等。除了一些基本知识以外,本书大部分内容是介绍与作者相关的成果。本书是一本学术专著,其研究课题连续不断地得到了国家自然科学基金的资助。作者在2002年曾出版《动力系统的周期解与分支理论》,其重点是高维系统的周期解。本书是专门论述二维系统的极限分支。本书的创新点是深入研究了Melnikov函数的展开式,获得了若干展开式系数的计算公式,并应用到一系列多项式系统,获得极限个数的新结果。本书内容前沿,自成一体。虽是专著,但又可以作为研究生教学用书,更可以作为同行科研用书。本书共有5章,第一章利用Poincar?e映射建立极限的基本性质,如重数与稳定性在变换下的不变性及非双曲极限在扰动下几类较简单的分支现象。第二章的主题是Hopf分支.首先引入焦点附近的Poincar?e映射,焦点稳定性、阶数及焦点量,之后给出研究焦点性质的三种方法,并给出这些方法之间的关系。特别深入研究了若干多项式系统的Hopf分支。利用Melnikov函数展开式的系数研究了初等中心在扰动下的退化Hopf分支问题。还引入了平面Zq等变系统等概念,并进行了分类研究。第三章给出近Hamiltonian系统的分支理论.首先引入了中心、闭轨以及同宿性数概念,之后建立寻求这些性数的一般方法,对含幂零奇点的Hamiltonian系统的扰动分支进行了深入研究,包括幂零中心的扰动分支、尖点的扰动分支、含幂零鞍点的同宿的扰动分支等,主要思路是研究Melnikov函数的展开式,并建立展开式中若干系数的计算公式。第四章专门研究同宿轨与两点异宿的扰动分支,与上一章不同的是,本章是通过同宿改变稳定性来获得极限。为此,我们先要建立同宿稳定性的判别量,然后较系统地研究同宿、双同宿与两点异宿在扰动下产生极限的个数问题。最后一章,即第五章,论述分支理论方法对平面一般多项式系统的一个有趣应用,基于某些3,4,5和6次多项式极限的个数估计,获得了6次以上任意多项式极限最多个数的下界(这些结果都是目前最好的下界估计)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值