解析qlib表达式引擎

在这里插入图片描述

定义基础类

import abc
import pandas as pd
import numpy as np
import re

class Expression(abc.ABC):
    
    def __str__(self):
        return type(self).__name__

    def __repr__(self):
        return str(self)

    def __add__(self, other):
        return Add(self, other)  # 重载运算符 + 

    def __radd__(self, other):
        return Add(other, self)

    def __sub__(self, other):
        return Sub(self, other) # 重载运算符 - 

    def __rsub__(self, other):
        return Sub(other, self)

    def __mul__(self, other):
        return Mul(self, other)

    def __rmul__(self, other):
        return Mul(self, other)

    def __div__(self, other):
        return Div(self, other)

    def __rdiv__(self, other):
        return Div(other, self)

    def load(self, instrument, start_index, end_index, *args):
        series = self._load_internal(instrument, start_index, end_index, *args)
        return series

    @abc.abstractmethod
    def _load_internal(self, instrument, start_index, end_index, *args) -> pd.Series:
        raise NotImplementedError("This function must be implemented in your newly defined feature")

class ExpressionOps(Expression):
    pass

#################### Pair-Wise Operator ####################
class PairOperator(ExpressionOps):
    def __init__(self, feature_left, feature_right):
        self.feature_left = feature_left
        self.feature_right = feature_right

    def __str__(self):
        return "{}({},{})".format(type(self).__name__, self.feature_left, self.feature_right)


class NpPairOperator(PairOperator):
    def __init__(self, feature_left, feature_right, func):
        self.func = func
        super(NpPairOperator, self).__init__(feature_left, feature_right)

    def _load_internal(self, instrument, start_index, end_index, *args):
        if isinstance(self.feature_left, (Expression,)):
            series_left = self.feature_left.load(instrument, start_index, end_index, *args)
        else:
            series_left = self.feature_left  # numeric value
        if isinstance(self.feature_right, (Expression,)):
            series_right = self.feature_right.load(instrument, start_index, end_index, *args)
        else:
            series_right = self.feature_right
        res = getattr(np, self.func)(series_left, series_right)
        return res

class Add(NpPairOperator):
    def __init__(self, feature_left, feature_right):
        super(Add, self).__init__(feature_left, feature_right, "add")

class Sub(NpPairOperator):
    def __init__(self, feature_left, feature_right):
        super(Sub, self).__init__(feature_left, feature_right, "subtract")

class Mul(NpPairOperator):
    def __init__(self, feature_left, feature_right):
        super(Mul, self).__init__(feature_left, feature_right, "multiply")

class Div(NpPairOperator):
    def __init__(self, feature_left, feature_right):
        super(Div, self).__init__(feature_left, feature_right, "divide")

class Feature(Expression):
    """Static Expression

    This kind of feature will load data from provider
    """

    def __init__(self, name=None):
        if name:
            self._name = name
        else:
            self._name = type(self).__name__

    def __str__(self):
        return "$" + self._name

    def _load_internal(self, instrument, start_index, end_index):
        return instrument.loc[start_index:end_index][self._name]
    

解析表达式

def parse_field(field):
    # Following patterns will be matched:
    # - $close -> Feature("close")
    # - $close5 -> Feature("close5")
    # - $open+$close -> Feature("open")+Feature("close")

    if not isinstance(field, str):
        field = str(field)

    for pattern, new in [
        (rf"\$([\w]+)", r'Feature("\1")'),
    ]:  # Features  # Operators
        field = re.sub(pattern, new, field)
    return field

def compute_feature(df, exp):
    exp = eval(parse_field(exp))
    return exp.load(df, 0, len(df))

def compute_features(df, exps, labels):
    data = dict()
    for label, exp in zip(labels, exps):
        data[label] = compute_feature(df, exp)
    if len(data) > 1:
        return pd.concat(data, axis=1)
    else:
        return pd.DataFrame(data)

样例

data = {
    'a' : [1,2,3,4,5], 
    'b' : [6,7,8,9,0]
}
df = pd.DataFrame(data)
compute_features(df, ["$a", "$b", "($a + $b) * ($a - $b)"], ['a','b', 'a^2 - b^2'])

在这里插入图片描述

<think>好的,用户想了解如何安装和使用Tushare及Qlib插件进行量化交易数据分析。首先,我需要回忆这两个工具的基本信息。Tushare是一个金融数据接口库,可以获取股票、基金等市场数据。Qlib则是微软开发的量化投资平台,支持从数据处理到模型训练的全流程。 接下来是安装步骤。Tushare可以通过pip直接安装,但需要注册获取token,这可能是个容易出错的地方,要提醒用户注意。Qlib的安装可能更复杂,除了库本身,可能还需要安装依赖项,比如C++编译工具,特别是Windows用户可能会遇到问题。另外,Qlib的插件安装可能需要通过git克隆仓库,然后安装,这部分需要详细说明。 然后是使用部分。Tushare需要初始化设置token,用户可能需要指导如何获取和保存token。获取数据后,用户可能需要保存为CSV或进行实时处理。Qlib的使用涉及数据集的创建、模型训练和回测,需要分步骤说明,可能还需要示例代码帮助用户理解。 用户可能遇到的问题包括安装错误、数据获取失败、模型配置错误等。需要提前想到这些情况,并给出解决建议,比如检查网络、更新依赖库等。 最后,生成相关问题时,要覆盖安装、配置、数据获取、集成使用、回测分析等方面,确保用户后续可能的问题都能得到解答。同时,注意引用提供的参考资料,尤其是Qlib-Server和回测分析的部分,增强回答的可信度。</think>### Tushare & Qlib 插件安装与使用指南 #### 一、Tushare 安装与配置 1. **安装步骤** ```bash pip install tushare ``` 2. **获取API Token** - 访问[Tushare官网](https://tushare.pro)注册账号 - 在个人中心获取`token`(如:`xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx`) 3. **初始化设置** ```python import tushare as ts ts.set_token('your_token') # 替换实际token pro = ts.pro_api() ``` 4. **数据获取示例** ```python # 获取股票日线数据 df = pro.daily(ts_code='600519.SH', start_date='20200101', end_date='20230101') print(df.head()) ``` #### 二、Qlib 插件集成 1. **核心库安装** ```bash pip install pyqlib ``` 2. **Qlib-Server 部署[^2] ```bash git clone https://github.com/microsoft/qlib cd qlib/scripts python setup_server.py ``` 3. **数据装载示例** ```bash python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn ``` #### 三、量化分析流程 1. **策略回测实现** ```python from qlib.contrib.strategy import TopkDropoutStrategy # 模型训练配置 model_config = { "class": "LGBModel", "module_path": "qlib.contrib.model.gbdt" } ``` 2. **回测结果分析[^3] ```python from qlib.contrib.report import analysis_position analysis_position.report_graph(portfolio_analysis_df) ``` §§常见问题§§ 1. **安装时报错`Microsoft Visual C++ 14.0 required`怎么办?** - 安装[Visual Studio Build Tools](https://visualstudio.microsoft.com/zh-hans/visual-cpp-build-tools/) - 或使用预编译包:`pip install pyqlib --no-dependencies` 2. **Tushare获取数据返回`401`错误?** - 检查token是否过期 - 确认账号权限是否满足接口要求 3. **如何将Tushare数据导入Qlib?** ```python from qlib.data import D D.feeder(dump_all=True, provider_uri='tushare_data_path') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值