原问题
min x    c T x s . t .                    A x = b x ≥ 0 \min_x \;c^Tx\\s.t. \;\;\;\;\;\;\;\;\;\\Ax=b\\x\geq 0 xmincTxs.t.Ax=bx≥0
对偶问题
max
y
  
b
T
y
s
.
t
.
                  
A
T
y
+
s
=
c
s
≥
0
\max_y\;b^Ty\\s.t.\;\;\;\;\;\;\;\;\;\\ A^Ty+s=c\\s\geq 0
ymaxbTys.t.ATy+s=cs≥0
A
∈
R
m
×
n
,
x
∈
R
n
,
s
∈
R
n
,
y
∈
R
m
A \in \R^{m\times n}, x \in \R^{n}, s \in \R^{n}, y \in \R^{m}
A∈Rm×n,x∈Rn,s∈Rn,y∈Rm
对偶间隙
0 ≤ x T s = x T ( c − A T y ) = x T c − ( A x ) T y = c T x − b T y 0 \leq x^Ts\\=x^T(c-A^Ty)\\=x^Tc-(Ax)^Ty\\=c^Tx-b^Ty 0≤xTs=xT(c−ATy)=xTc−(Ax)Ty=cTx−bTy意味着原问题的最优值 ≥ \geq ≥ 对偶问题的最优值,这就是弱对偶定理。
强对偶
强对偶意味着对偶间隙等于0,即 s T z = 0 s^Tz=0 sTz=0,又因为 s > 0 , x > 0 s > 0, x>0 s>0,x>0,所以 x i s i = 0 ,            i = 1 , 2 , . . . , n x_is_i=0, \;\;\;\;\;i=1,2,...,n xisi=0,i=1,2,...,n这说明若 x i > 0 ⇒ s i = 0        且        x i > 0 ⇒ s i = 0 x_i >0 \Rightarrow s_i =0 \;\;\;且\;\;\; x_i >0 \Rightarrow s_i =0 xi>0⇒si=0且xi>0⇒si=0,因而称之为 互补性松弛。
KKT条件
(1)
A
x
=
b
Ax=b \tag{1}
Ax=b(1)
(2)
A
T
y
+
s
=
c
A^Ty+s=c\tag{2}
ATy+s=c(2)
(3)
x
i
s
i
=
0
  
(
i
=
1
,
2
,
.
.
.
,
n
)
x_is_i=0 \;(i=1,2,...,n)\tag{3}
xisi=0(i=1,2,...,n)(3)
(1)(2)分别是原问题和对偶问题的可行性条件,(3)即互补松弛条件。上面一共 2n+m 个方程,正好对应 x,y,s 这 2n+m 个变量。
对偶问题的推导
参见博文《线性规划——对偶问题的推导
》