线性规划——对偶问题的推导

原问题

min ⁡ x    c T x s . t .    A x = b x ≥ 0 (1) \min_x \;c^Tx\\s.t. \;Ax=b\\x\geq 0 \tag{1} xmincTxs.t.Ax=bx0(1)

对偶问题

max ⁡ y    b T y s . t .    A T y + s = c s ≥ 0 (2) \max_y\;b^Ty\\s.t.\;A^Ty+s=c\\s\geq 0\tag{2} ymaxbTys.t.ATy+s=cs0(2)
A ∈ R m × n , x ∈ R n , s ∈ R n , y ∈ R m A \in \R^{m\times n}, x \in \R^{n}, s \in \R^{n}, y \in \R^{m} ARm×n,xRn,sRn,yRm


推导

引入拉格朗日函数: L ( x , λ , μ ) = c T x + λ T ( A x − b ) − μ T x L(x,\lambda,\mu) = c^Tx+\lambda^T(Ax-b)-\mu^T x L(x,λ,μ)=cTx+λT(Axb)μTx要求 μ > 0 \mu >0 μ>0 λ \lambda λ随意。容易验证: sup ⁡ λ , μ L ( x , λ , μ ) = c T x \sup_{\lambda,\mu} L(x,\lambda,\mu) = c^Tx λ,μsupL(x,λ,μ)=cTx因而原问题就等价于: inf ⁡ x ∈ D sup ⁡ λ , μ L ( x , λ , μ ) , (P) \inf_{x\in D}\sup_{\lambda,\mu} L(x,\lambda,\mu), \tag{P} xDinfλ,μsupL(x,λ,μ),(P)其中可行域 D = { x ∣ A x = b , x ≥ 0 } D=\{x| Ax=b, x \geq 0\} D={xAx=b,x0}。下面我们构造对偶问题:
sup ⁡ λ , μ inf ⁡ x L ( x , λ , μ ) . (D) \sup_{\lambda,\mu}\inf_{x} L(x,\lambda,\mu). \tag{D} λ,μsupxinfL(x,λ,μ).(D)
先对 x 取下界:
inf ⁡ x L ( x , λ , μ ) = − λ T b + inf ⁡ x ( c + A T λ − μ ) T x = { − λ T b ,          c + A T λ − μ = 0 − ∞ ,                o t h e r w i s e \inf_{x} L(x,\lambda,\mu) \\= -\lambda^Tb + \inf_x{(c+A^T\lambda -\mu)^Tx} \\=\left\{ \begin{array}{lr} -\lambda^Tb, \;\;\;\;c+A^T\lambda -\mu=0& \\ -\infty, \;\;\;\;\;\;\;otherwise& \end{array} \right. xinfL(x,λ,μ)=λTb+xinf(c+ATλμ)Tx={λTb,c+ATλμ=0,otherwise
显而易见,对偶问题 (D) 值有当 c + A T λ − μ = 0 c+A^T\lambda -\mu=0 c+ATλμ=0 时才有意义。所以对偶问题写成: max ⁡ λ    − b T λ s . t .    A T λ − μ + c = 0 μ ≥ 0 \max_\lambda\;-b^T\lambda\\s.t.\; A^T\lambda-\mu+c=0\\\mu\geq 0 λmaxbTλs.t.ATλμ+c=0μ0 y = − λ , s = μ y = -\lambda, s=\mu y=λ,s=μ 即变成问题 (2)。

  • 14
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值