如果 A 是 n 维线性空间的一个线性变换,那么有: A 的 秩 + A 的 零 度 = n A 的秩 + A的零度 = n A的秩+A的零度=n也就是 (1) d i m A V + d i m A − 1 ( 0 ) = d i m V = n dimAV + dimA^{-1}(0) = dimV = n\tag{1} dimAV+dimA−1(0)=dimV=n(1)
看上去它们互补,但是看一个例子:
在线性空间 P [ x ] n P[x]_n P[x]n中,令 D f ( x ) = f ′ ( x ) , Df(x) = f'(x), Df(x)=f′(x),那么D的值域为子空间 P [ x ] n − 1 P[x]_{n-1} P[x]n−1,维数为n-1;核为子空间 P P P,维数为1。很明显, N ( D ) ⊆ R ( D ) 。 N(D)\subseteq R(D)。 N(D)⊆R(D)。
有趣的是,A的核与 A T A^T AT的值域构成了全空间的直和分解: R n = R ( A T ) + N ( A ) \R^n = R(A^T)+N(A) Rn=R(AT)+N(A)下面来证明:
首先, R ( A T ) R(A^T) R(AT)和 N ( A ) N(A) N(A)都是 R n \R^n Rn的子空间,且满足维数公式: d i m A T V + d i m A − 1 ( 0 ) = d i m V = n dimA^TV + dimA^{-1}(0) = dimV = n dimATV+dimA−1(0)=dimV=n这是因为A和行秩等于列秩,由(1)式直接得出。
其次,
R
(
A
T
)
R(A^T)
R(AT)和
N
(
A
)
N(A)
N(A)的交集只有零元素:
i
f
    
x
∈
{
x
∣
x
=
A
T
z
,
∃
z
∈
R
n
}
=
R
(
A
T
)
,
a
n
d
x
∈
{
x
∣
A
x
=
0
}
=
N
(
A
)
,
if \;\;x \in \{x|x=A^Tz,\exist z\in\R^n\}=R(A^T), \\and\\ x\in\{x|Ax=0\}=N(A),
ifx∈{x∣x=ATz,∃z∈Rn}=R(AT),andx∈{x∣Ax=0}=N(A),
⇒
x
T
x
=
z
T
A
x
=
0
⇒
x
=
0
\Rightarrow x^Tx = z^TAx=0\\\Rightarrow x=0
⇒xTx=zTAx=0⇒x=0
最后,任意
R
(
A
T
)
R(A^T)
R(AT)的向量和
N
(
A
)
N(A)
N(A)中的向量正交:
∀
x
∈
{
x
∣
x
=
A
T
z
,
∃
z
∈
R
n
}
=
R
(
A
T
)
,
\forall x \in \{x|x=A^Tz,\exist z\in\R^n\}=R(A^T),
∀x∈{x∣x=ATz,∃z∈Rn}=R(AT),
∀
y
∈
{
y
∣
A
y
=
0
}
=
N
(
A
)
,
\forall y\in\{y|Ay=0\}=N(A),
∀y∈{y∣Ay=0}=N(A),
⇒
x
T
y
=
z
T
A
y
=
0
\Rightarrow x^Ty = z^TAy=0
⇒xTy=zTAy=0
证毕。