6-11 Shortest Path [1](25 分)

Write a program to find the unweighted shortest distances from any vertex to a given source vertex in a digraph.

Format of functions:

void ShortestDist( LGraph Graph, int dist[], Vertex S );

where LGraph is defined as the following:

typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;
    PtrToAdjVNode Next;
};

typedef struct Vnode{
    PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];

typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;
    int Ne;
    AdjList G;
};
typedef PtrToGNode LGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define MaxVertexNum 10  /* maximum number of vertices */
typedef int Vertex;      /* vertices are numbered from 0 to MaxVertexNum-1 */

typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;
    PtrToAdjVNode Next;
};

typedef struct Vnode{
    PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];

typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;
    int Ne;
    AdjList G;
};
typedef PtrToGNode LGraph;

LGraph ReadG(); /* details omitted */

void ShortestDist( LGraph Graph, int dist[], Vertex S );

int main()
{
    int dist[MaxVertexNum];
    Vertex S, V;
    LGraph G = ReadG();

    scanf("%d", &S);
    ShortestDist( G, dist, S );

    for ( V=0; V<G->Nv; V++ )
        printf("%d ", dist[V]);

    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

7 9
0 1
0 5
0 6
5 3
2 1
2 6
6 4
4 5
6 5
2

Sample Output:

-1 1 0 3 2 2 1
/* Your function will be put here */
void ShortestDist( LGraph Graph, int dist[], Vertex S )
{//不需要为了确保每个元素只进队一次而使用visited[]数组,因为dist[]初值为-1,随后由于BFT其值只被改变一次(再次访问某顶点时,当时的距离值level必然更大)
    for(int i = 0; i < Graph->Nv; ++i)
        dist[i] = -1;
    dist[S] = 0;
    int Q[Graph->Nv];//输入顶点数有可能大于MaxVertexNum
    int first = 0, rear = 0;
    Q[rear++] = S;
    PtrToAdjVNode current;
    int Qhead;
    int level = 1;//level其实是距离
    //level和level_end的设定类似于求二叉树的深度
    int level_end = 0;//相当于二叉树每层最后一个结点的位置
    //level_end一开始用值标记,最后还是觉得用位置标记更准确
    while(first < rear)//BFT
    {
        Qhead = Q[first++];
        current = Graph->G[Qhead].FirstEdge;
        while(current != NULL)
        {
	    //入队语句一开始的位置
            if(dist[current->AdjV] == -1)
            {
                Q[rear++] = current->AdjV;
                //入队这句,一开始放在if的上面了,这将导致环路顶点二次入队使队列数组越界
                dist[current->AdjV] = level;
            }
            current = current->Next;
        }
        if(first - 1 == level_end)
        {
            level_end = rear - 1;
            ++level;
        }
    }
}
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
All-Pairs Shortest Path问题是指在一个带权有向图中,求出任意两个节点之间的最短路径。解决这个问题的算法称为All-Pairs Shortest Path算法。 常用的All-Pairs Shortest Path算法有Floyd-Warshall算法和Johnson算法。 Floyd-Warshall算法的基本思想是动态规划。用dist[i][j]表示从节点i到节点j的最短路径长度,用k表示中间节点,则有状态转移方程: ``` dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]) ``` 其中,dist[i][j]的初始值为节点i到节点j的边权,如果i和j之间没有边,则为正无穷。算法的核心是对k从1到n的循环,依次更新dist[i][j]的值,最终得到所有节点之间的最短路径长度。 Floyd-Warshall算法的时间复杂度为O(n^3),其中n为节点数,主要时间花费在三层循环上,实际应用中可以通过空间换时间的方式优化算法。 Johnson算法的基本思想是通过引入一个虚拟节点,并将其与所有节点之间的边权设为0,将问题转化为带权有向图中的单源最短路径问题。然后使用Bellman-Ford算法求出虚拟节点到其它所有节点的最短路径长度,再用求最短路径时的松弛操作更新所有边的边权,将问题转化为带权有向图中的多源最短路径问题。最后使用Dijkstra算法求出所有节点之间的最短路径长度。 Johnson算法的时间复杂度为O(n^2logn+m),其中n为节点数,m为边数,主要时间花费在Bellman-Ford算法和Dijkstra算法上,实际应用中可以通过优化数据结构等方式优化算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值