4-11 Shortest Path [1] (25分)
Write a program to find the unweighted shortest distances from any vertex to a given source vertex in a digraph.
Format of functions:
void ShortestDist( LGraph Graph, int dist[], Vertex S );
where LGraph
is defined as the following:
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
LGraph ReadG(); /* details omitted */
void ShortestDist( LGraph Graph, int dist[], Vertex S );
int main()
{
int dist[MaxVertexNum];
Vertex S, V;
LGraph G = ReadG();
scanf("%d", &S);
ShortestDist( G, dist, S );
for ( V=0; V<G->Nv; V++ )
printf("%d ", dist[V]);
return 0;
}
/* Your function will be put here */
Sample Input (for the graph shown in the figure):
7 9
0 1
0 5
0 6
5 3
2 1
2 6
6 4
4 5
6 5
2
Sample Output:
-1 1 0 3 2 2 1
codes:
//实际上就是用了BFS来做,在函数内部建一个数组来作为队列;
void ShortestDist(LGraph Graph, int dist[], Vertex S) {
PtrToAdjVNode ptr;
Vertex i, front, rear, temp ,V;
Vertex *queue;
int count = 0;
front = rear = 0;
queue = (Vertex *)malloc( (Graph->Nv + 1) * sizeof(Vertex));
for (i = 0; i < Graph->Nv; i++) {
dist[i] = -1;
queue[i] = -1;
}
queue[i] = -1;
temp = S;
dist[S] = 0;
queue[front] = S;
rear++;
while (queue[front] != -1)
{
count++;
ptr = Graph->G[queue[front]].FirstEdge;
V = queue[front] ;
while (ptr) {
if (dist[ptr->AdjV] == -1) {
queue[rear] = ptr->AdjV;
dist[ptr->AdjV] = dist[V] +1;
rear++;
}
ptr = ptr->Next;
}
front++;
}
}
void ShortestDist(LGraph Graph, int dist[], Vertex S) {
PtrToAdjVNode ptr;
Vertex i, front, rear, temp ,V;
Vertex *queue;
int count = 0;
front = rear = 0;
queue = (Vertex *)malloc( (Graph->Nv + 1) * sizeof(Vertex));
for (i = 0; i < Graph->Nv; i++) {
dist[i] = -1;
queue[i] = -1;
}
queue[i] = -1;
temp = S;
dist[S] = 0;
queue[front] = S;
rear++;
while (queue[front] != -1)
{
count++;
ptr = Graph->G[queue[front]].FirstEdge;
V = queue[front] ;
while (ptr) {
if (dist[ptr->AdjV] == -1) {
queue[rear] = ptr->AdjV;
dist[ptr->AdjV] = dist[V] +1;
rear++;
}
ptr = ptr->Next;
}
front++;
}
}