PTA shortest path[1]

4-11 Shortest Path [1]   (25分)

Write a program to find the unweighted shortest distances from any vertex to a given source vertex in a digraph.

Format of functions:

void ShortestDist( LGraph Graph, int dist[], Vertex S );

where LGraph is defined as the following:

typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;
    PtrToAdjVNode Next;
};

typedef struct Vnode{
    PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];

typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;
    int Ne;
    AdjList G;
};
typedef PtrToGNode LGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define MaxVertexNum 10  /* maximum number of vertices */
typedef int Vertex;      /* vertices are numbered from 0 to MaxVertexNum-1 */

typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;
    PtrToAdjVNode Next;
};

typedef struct Vnode{
    PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];

typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;
    int Ne;
    AdjList G;
};
typedef PtrToGNode LGraph;

LGraph ReadG(); /* details omitted */

void ShortestDist( LGraph Graph, int dist[], Vertex S );

int main()
{
    int dist[MaxVertexNum];
    Vertex S, V;
    LGraph G = ReadG();

    scanf("%d", &S);
    ShortestDist( G, dist, S );

    for ( V=0; V<G->Nv; V++ )
        printf("%d ", dist[V]);

    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

7 9
0 1
0 5
0 6
5 3
2 1
2 6
6 4
4 5
6 5
2

Sample Output:

-1 1 0 3 2 2 1



codes:
//实际上就是用了BFS来做,在函数内部建一个数组来作为队列;

void ShortestDist(LGraph Graph, int dist[], Vertex S) {
PtrToAdjVNode ptr;
Vertex i, front, rear, temp ,V;
Vertex *queue;
int count = 0;
front = rear = 0;
queue = (Vertex *)malloc( (Graph->Nv + 1) * sizeof(Vertex));
for (i = 0; i < Graph->Nv; i++) {
dist[i] = -1;
queue[i] = -1;
}
queue[i] = -1;
temp = S;
dist[S] = 0;
queue[front] = S;
rear++;
while (queue[front] != -1)
{
count++;
ptr = Graph->G[queue[front]].FirstEdge;
V = queue[front] ;
while (ptr) {
if (dist[ptr->AdjV] == -1) {
queue[rear] = ptr->AdjV;
dist[ptr->AdjV] = dist[V] +1;
rear++;
}
ptr = ptr->Next;
}
front++;
}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值