背包问题总结

01背包

#include <iostream>
#include <algorithm>


using namespace std;

const int N = 1000 + 9;

int n,m;
int v[N],w[N];int f[N][N];
//只从前i个物品中选,总体积小于j的所有选法
void solve()
{
	cin >> n >> m;
	for (int i = 1;i <= n;i ++) cin >> v[i] >> w[i];
	//f[0][0~m] = 0;
	for (int i = 1;i <= n;i ++)
		for (int j = 0;j <= m;j ++)
		{
			f[i][j] = f[i - 1][j];
			if (j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
		}
	cout << f[n][m] << endl;
}


二维到一维的转化

 f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]) => f[j] = max(f[j],f[j - v[i]] + w[i]);

需要倒着枚举体积,因为原始方程是,f[i - 1][j - v[i]],是i - 1层的体积,如果从小到大枚举体积,由于   j - v[i] < j ,所以f[j - v[i]] 会被提前更新,f[j - v[i]] 表示的就不是我们所需要的i - 1层的体积了,因此需要从大到小枚举体积


#include <iostream>
#include <algorithm>

using namespace std;
const int N = 1000 + 9;


int n,m;
int v[N],w[N];
int f[N];
//只从前i个物品中选,总体积小于j的所有选法
void solve()
{
	cin >> n >> m;
	for (int i = 1;i <= n;i ++) cin >> v[i] >> w[i];

	for (int i = 1;i <= n;i ++)
		for (int j = m;j >= v[i];j --)
		{
			f[j] = max(f[j],f[j - v[i]] + w[i]);
		}
	cout << f[m] << endl;
}

完全背包 //UNDO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值