打卡 day 7
之前写的
这我找到了一篇解释的很清楚的博客
题面就是给n个作业,每个作业有一个截至时间,然后输出超时最少的情况。(有多个最小按字典序输出第一种)
状压DP我写的第一感觉就好像大枚举。
其实就是二进制的每一位代表一个科目,n<=15,就可以用1<<15(其实需要的是0~14,开大一点内存)表示。
状态压缩其实就是一种枚举的方式。
先列出来每一个状态,然后去看当前的状态有没有父亲,例如:
10010
&
10011
10010\&10011
10010&10011
两者相与的结果为1,每一位都相当于一个作业科目,1表示做过了,0表示没做过,怎么去找父亲,10010表示做过了第一门和第四门,10011表示做过了第一门和第四门,现在要做第五门,如果当前的状态花费时间(超时)最小,我们就说10010是10011的父亲,因为现在的时间是从上一次的时间继承下来的。
怎么按序输出,每一次记录一下下标就行。
#include<iostream>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<functional>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=20;
struct node{
string name;
int dead;
int cost;
}a[maxn];
int t;
int n;
struct ans{
int fa,zz,score,time;
}dp[1<<15];
int main(){
cin>>t;
while(t--){
memset(dp,0,sizeof(dp));
cin>>n;
for(int i=0;i<n;i++) cin>>a[i].name>>a[i].dead>>a[i].cost;
int cnt=1<<n;
for(int i=1;i<cnt;i++){
dp[i].score=INF;
for(int j=n-1;j>=0;j--){//倒序保证字典序
int temp=1<<j;
if(i&temp){
int tem=i-temp;
int tt=dp[tem].time+a[j].cost-a[j].dead;
if(tt<0) tt=0;
if(tt+dp[tem].score<dp[i].score){
dp[i].score=tt+dp[tem].score;
dp[i].fa=tem;
dp[i].zz=j;
dp[i].time=dp[tem].time+a[j].cost;
}
}
}
}
cout<<dp[cnt-1].score<<"\n";
stack<int> q;
int tt=cnt-1;
while(dp[tt].time){
q.push(dp[tt].zz);
tt=dp[tt].fa;
}
while(!q.empty()){
int k=q.top();
cout<<a[k].name<<"\n";
q.pop();
}
}
return 0;
}