kuangbin题单 简单DP 状压DP 记录路径 Doing Homework HDU1074

打卡 day 7
之前写的
这我找到了一篇解释的很清楚的博客
题面就是给n个作业,每个作业有一个截至时间,然后输出超时最少的情况。(有多个最小按字典序输出第一种)
状压DP我写的第一感觉就好像大枚举。
其实就是二进制的每一位代表一个科目,n<=15,就可以用1<<15(其实需要的是0~14,开大一点内存)表示。
状态压缩其实就是一种枚举的方式。
先列出来每一个状态,然后去看当前的状态有没有父亲,例如:
10010 & 10011 10010\&10011 10010&10011
两者相与的结果为1,每一位都相当于一个作业科目,1表示做过了,0表示没做过,怎么去找父亲,10010表示做过了第一门和第四门,10011表示做过了第一门和第四门,现在要做第五门,如果当前的状态花费时间(超时)最小,我们就说10010是10011的父亲,因为现在的时间是从上一次的时间继承下来的。
怎么按序输出,每一次记录一下下标就行。

#include<iostream>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<functional>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=20;
struct node{
    string name;
    int dead;
    int cost;
}a[maxn];
int t;
int n;
struct ans{
    int fa,zz,score,time;
}dp[1<<15];
int main(){
    cin>>t;
    while(t--){
        memset(dp,0,sizeof(dp));
        cin>>n;
        for(int i=0;i<n;i++) cin>>a[i].name>>a[i].dead>>a[i].cost;
        int cnt=1<<n;
        for(int i=1;i<cnt;i++){
            dp[i].score=INF;
            for(int j=n-1;j>=0;j--){//倒序保证字典序
                int temp=1<<j;
                if(i&temp){
                    int tem=i-temp;
                    int tt=dp[tem].time+a[j].cost-a[j].dead;
                    if(tt<0) tt=0;
                    if(tt+dp[tem].score<dp[i].score){
                        dp[i].score=tt+dp[tem].score;
                        dp[i].fa=tem;
                        dp[i].zz=j;
                        dp[i].time=dp[tem].time+a[j].cost;
                    }
                }
            }
        }
        cout<<dp[cnt-1].score<<"\n";
        stack<int> q; 
        int tt=cnt-1;
        while(dp[tt].time){
            q.push(dp[tt].zz);
            tt=dp[tt].fa;
        }
        while(!q.empty()){
            int k=q.top();
            cout<<a[k].name<<"\n";
            q.pop();
        }
    }
    return 0;
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值