薄壳理论在形状匹配等领域的应用

在形状匹配(shape matching)中,很多时候我们只关心物体表面的对应关系,表面配准(surface matching)就成了一个重要的问题,即给定两个在3D空间中的2D表面,如何找到他们之间的对应关系。一般来说,表面配准并不比图像配准简单。首先,一个surface通常由triangle mesh来表示,而任何定义在连续曲面上的微分都面临着更复杂的离散化过程。另外,一个surface在3D空间中的形变过程无法像图像那样依赖于梯度(其实有很多工作会首先将一个surface转化为一个3D level set图像,再用普通的图像配准方法;或者将某些图像配准的方法拓展到surface配准上)。最后,在实际应用中,很多surface包含大量噪音,并含有缺失信息,比如3D扫描会出现一个有很多毛刺,和空洞的曲面。


很多工作都在一般图像配准的框架内解决surface匹配问题:解决一个最优化问题,利用梯度信息最小化以下形式的能量方程:

E(u)=Data Match(s1+u,s2) + Regularity(u)

其中u为每个点的形变向量。Data match衡量了一个surface形变后与另一个surface的相似程度。对于两个曲面,“相似”的定义比较困难,因为我们现在没有灰度值和梯度值的信息。目前,主流的相似度衡量大多基于最相近点距离(closest point distance),以及曲面特征相似度(曲率,Heat Kernel,Spin Image)。

第二项Regularity规范了形变的合理性。图像中最常用的是类似的算子。当然我们也可以在surface上定义这些操作,但是其意义并不直观。所以一种想法是将surface看成一种弹性薄壳体,即一个其厚度可以忽略不计的3D实体。这时,Regularity项就可以定义为薄壳的形变能量。对于薄壳的力学分析是一套系统的物理理论。在计算机科学中,薄壳的形变能量已经在Computer Graphics中的simulation和animation领域得到了应用。 

现在来看薄壳的形变能量,可以推导出薄壳的局部形变能量可以分解为延伸(stretching)和弯曲(bending).


拉伸能量(stretching energy/membrane energy):

因为局部曲面可以由切平面参数化,所以局部的拉伸可以由切平面的变换求得。我们定义切平面的Cauchy-Green Strain tensor为一个2*2对称正定阵:


其中J为切平面变换的Jacobian矩阵。基于此的拉伸能量定义为:


其中\mu和\lambda为拉梅常数。矩阵的det衡量了面积变换(参考行列式的几何意义)。矩阵的trace衡量了拉伸,因为在切平面上沿某个切向量v的拉伸率为:

由此可见,两个特征值表示了局部的最大拉伸率和最小拉伸率,而矩阵的trace等于两特征值之和。


在离散的triangle mesh上计算拉伸能量有2种方法。

1.计算每条边长度的变化量

2.通过三角形的形变计算出切平面的变换线性变换J。 (这里每个三角形平面正好可以近似为局部切平面)

第一种方法的优势是数值计算上更容易,因为它可以写成一个二次凸函数。 而第二种方法的优势是它描述了连续曲面的能量(即使这个曲面是分段线性的),而不是像第一种方法一样从一开始就做了离散的近似。另外第二种方法更能够强调拉伸的方向性(跟矩阵的特征向量有关),而第一种方法假设了每个局部只能向一个方向拉伸,而当这个triangle mesh越来越精细时,第一种局部拉伸能量不会收敛到真实值。


弯曲能量(bending energy)

薄壳的弯曲能量一般由局部的shape operator的改变衡量。shape operator是黎曼几何中的概念,简单来说,它可以表示为一个2*2对称正定阵,描述了局部法向量的变化模式(也就是蕴含了局部的曲率信息)。那么弯曲能量可以定义为:


其中Lambda即为原始的shape operator和形变后的shape operator,引入切平面变换J来消除拉伸所带来的shape operator影响。这里采用了Frobenius Norm来衡量矩阵的大小。


在离散的triangle mesh上计算弯曲能量也有2种方法。

1.计算两个相邻三角形夹角的变化

2.通过一个三角形和其三个相邻三角形计算出shape operator,再衡量其变化

同样的,第二种方法更好的给出了连续曲面的描述,而第一种方法假设了任何局部曲面只能有一个弯曲方向,而另一个方向的曲率衡为0,即假设曲面的高斯曲率处处为0,所以第一种方法仍然有非收敛的问题存在。


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值