图的最短路径 --- Dijkstra & Floyd

本文深入探讨了图的最短路径问题,包括单源最短路径和所有顶点之间的最短路径。介绍了迪杰斯特拉算法和弗洛伊德算法的原理、步骤及其实现。迪杰斯特拉算法采用贪心策略,通过广度优先搜索求解单源最短路径;而弗洛伊德算法利用动态规划解决所有顶点间最短路径。两者分别适用于不同的场景,对理解图的最短路径问题有重要价值。
摘要由CSDN通过智能技术生成

图的最短路径

最短路径问题:如果从有向图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小

两种最常见最短路径问题:单源最短路径问题和所有顶点之间的最短路径

单源最短路径问题

给定一个带权有向图 D 与源点 v ,求从v 到 D 中其它顶点的最短路径。限定各边上的权值大于0

迪杰斯特拉(Dijkstra)

  • 特点:
    迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树

  • 思路:
    >Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。

    >然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,

    >然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。

    >然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

  • 图示例:

    • 初始化
      1646136947.png

    • 第一条最短路径
      1646136947_1_.png

    • 第二条最短路径
      1646136947_2_.png

    • 第三条最短路径
      1646136947_3_.png

    • 第四条最短路径
      1646136947_4_.png

    • A到其他顶点的最短路径
      1646136947_5_.png

  • 算法:

1.初始化: S ←{v0};dist[j] ← Edge[0][j], j = 1, 2, …, n-1;
2.找出最短路径所对应的点 K:dist[k] == min { dist[i] }, i ∈ V- S ;S ← S U { k };
3.对于每一个 i ∈ V- S 修改:dist[i] ← min{ dist[i],dist[k] + Edge[k][i] };
4.判断:若 S = V, 则算法结束,否则转2

  • 代码:
def dijkstra():
    visited = [0] * n
    dis = [MAX] * n
    for i in range(n):
        dis[i] = res[0][i]  # 初始化
    visited[0] = 1  # 初始点访问
    dis[0] = 0
    for t in range(n - 1):
        _min = MAX
        k = -1
        for i in range(1, n):
            if visited[i] == 0 and dis[i] < _min:
                _min = dis[i]
                k = i
        if k == -1:  # 非连通的
            return dis
        visited[k] = 1

        for j in range(0, n):
            if dis[k] + res[k][j] < dis[j]:
                dis[j] = dis[k] + res[k][j]
    return dis
  • 时间复杂度:O(n*n)

所有顶点之间的最短路径问题

已知一个各边权值均大于0的带权有向图,对每一对顶点 vi≠vj,要求求出vi与vj之间的最短路径和最短路径长度

弗洛伊德(Floyd)

  • 特点:
    又称为弗洛伊德算法、插点法,算法的主要思想是动态规划(dp),是解决给定的加权图中顶点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。无负权回路即可,边权可正可负,运行一次算法即可求得任意两点间最短路

  • 思想:
    >邻接矩阵(二维数组)dist储存路径,数组中的值开始表示点点之间初始直接路径,最终是点点之间的最小路径,有两点需要注意的,第一是如果没有直接相连的两点那么默认为一个很大的值(不要因为计算溢出成负数),第二是自己和自己的距离要为0。

    >从第1个到第n个点依次加入松弛计算,每个点加入进行试探枚举是否有路径长度被更改(自己能否更新路径)。顺序加入(k枚举)松弛的点时候,需要遍历图中每一个点对(i,j双重循环),判断每一个点对距离是否因为加入的点而发生最小距离变化,如果发生改变(变小),那么两点(i,j)距离就更改。

    >重复上述直到最后插点试探完成。

  • 图示例:
    image.png
    image.png
    image.png
    image.png
    image.png
    image.png
    image.png
    image.png

    ps:为初学者提供较清楚的算法图示思路,便于理解,图为借鉴他人博客

  • 算法:

1.初始化dist矩阵,其值dist[i][j]即i与j之间的权值,若i和j不相邻,则dist[i][j]为极大值
2.从第一个顶点开始(自由挑选)作为中介点k
3.dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j])

  • 代码:
def floyd():
    # visited = [0] * n
    # print(visited)
    dis = [MAX] * n
    for v in range(n):
        dis[v] = res[0][v]
    # visited[0] = 1
    for v in range(n):
        for g in range(n):
            for h in range(n):
                if res[g][v] + res[v][h] < res[g][h]:
                    res[g][h] = res[g][v] + res[v][h]
    # print(res)
    return res[0]
  • 时间复杂度:(n*n*n)
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值