[poj 3468]A Simple Problem with Interger[线段树][区间更新]

题意:

给出N个数, 有两种操作:

"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... ,Ab.

回答每个询问.

思路:

裸的线段树区间更新, 注意范围.


重新熟悉线段树的流程, 按照其合理性去记忆每一步.

#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define LL long long
const int maxn = 111111;
LL add[maxn<<2];//lazy
LL sum[maxn<<2];
void PushUp(int rt) {//从rt的下方push上来
	sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
	if (add[rt]) {//如果有标记,操作.
		add[rt<<1] += add[rt];
		add[rt<<1|1] += add[rt];//标记是累加的
		sum[rt<<1] += add[rt] * (m - (m >> 1));//因为是每一个数都要加,所以需要乘
		sum[rt<<1|1] += add[rt] * (m >> 1);//长度为奇数时,根据m的计算方式, 左儿子长=右儿子长+1
//所谓"成段更新"不过是不直接将"对每一个终端的操作"落到实处, 那么反过来,
//所谓PushDown, 不过是将标记反映到终端. 标记即为add, 终端即为sum.
//上面的四句, 核心还是sum, 为了保证子代sum的正确, 需要更新儿子add, 当然还要更新儿子的sum
		add[rt] = 0;//善后!
	}
}
void build(int l,int r,int rt) {
	add[rt] = 0;//此句初始化每一个add
	if (l == r) {
		scanf("%lld",&sum[rt]);
		return ;
	}
	int m = (l + r) >> 1;
	build(lson);
	build(rson);
	PushUp(rt);//此句初始化每一个sum, 而不需要管add.
}
void update(int L,int R,int c,int l,int r,int rt) {
	if (L <= l && r <= R) {
		add[rt] += c;
		sum[rt] += (LL)c * (r - l + 1);
		return ;
	}//如果当前段落在要更新的范围内,那么可以直接更新, 否则就要拆开更新
	//add是管儿子情况的, 自己的sum还是需要现场更新
	PushDown(rt , r - l + 1);//sum总是对的, 
	//但是在进入下一层时, 首先要检查更新, 为拆做准备
	int m = (l + r) >> 1;//拆
	if (L <= m) update(L , R , c , lson);
	if (m < R) update(L , R , c , rson);
	PushUp(rt);//因为是拆开更新了, 所以要再次保证sum的正确
}
LL query(int L,int R,int l,int r,int rt) {
	if (L <= l && r <= R) {
		return sum[rt];
	}//如果当前段落在要查询的范围内, 那么可以直接使用, 否则就要拆开来看, 
	//那么首先应该检查更新被拆的位置
	PushDown(rt , r - l + 1);//sum总是对的, 
	//但是在进入下一层时, 首先要检查更新, 为拆做准备
	int m = (l + r) >> 1;//拆
	LL ret = 0;
	if (L <= m) ret += query(L , R , lson);
	if (m < R) ret += query(L , R , rson);
	return ret;
}
int main() {
	int N , Q;
	scanf("%d%d",&N,&Q);
	build(1 , N , 1);
	while (Q --) {
		char op[2];
		int a , b , c;
		scanf("%s",op);
		if (op[0] == 'Q') {
			scanf("%d%d",&a,&b);
			printf("%lld\n",query(a , b , 1 , N , 1));
		} else {
			scanf("%d%d%d",&a,&b,&c);
			update(a , b , c , 1 , N , 1);
		}
	}
	return 0;
}

自己敲:

又有手残的错误...

#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
typedef long long ll;
const int MAXN = 100005;
ll add[MAXN<<2], sum[MAXN<<2];
void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt, int m)
{
    if(add[rt])
    {
        add[rt<<1] += add[rt];
        add[rt<<1|1] += add[rt];
        sum[rt<<1] += add[rt]*(m - (m >> 1));
        sum[rt<<1|1] += add[rt]*(m >> 1);
        add[rt] = 0;
    }
}
void build(int l, int r, int rt)
{
    add[rt] = 0;
    if(l==r)
    {
        scanf("%lld",&sum[rt]);
        return;
    }
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
    PushUp(rt);
}
void update(int L, int R, int c, int l, int r, int rt)
{
    if(L<=l && r<=R)
    {
        sum[rt] += (ll)c*(r - l + 1);
        add[rt] += c;
        return;
    }
    PushDown(rt, r - l + 1);
    int m = (l + r) >> 1;
    if(L<=m) update(L, R, c, lson);
    if(m<R)  update(L, R, c, rson);
    PushUp(rt);
}
ll query(int L, int R, int l,int r, int rt)
{
    if(L<=l && r<=R)
    {
        return sum[rt];
    }
    PushDown(rt, r - l + 1);
    int m = (l + r) >> 1;
    ll ret = 0;
    if(L <= m) ret += query(L, R, lson);
    if(m < R)  ret += query(L, R, rson);
    return ret;
}
int main()
{
    int N, Q;
    scanf("%d %d",&N,&Q);
    build(1, N, 1);
    while(Q--)
    {
        char op[2];
        int a,b,c;
        scanf("%s",op);
        if(op[0]=='Q')
        {
            scanf("%d %d",&a, &b);
            printf("%lld\n",query(a, b, 1, N, 1));
        }
        else
        {
            scanf("%d %d %d",&a, &b, &c);
            update(a, b, c, 1, N, 1);
        }
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值