- 博客(24)
- 收藏
- 关注
原创 标定docker镜像的搭建和使用方法总结
Dockerfile是一个包含用于组合映像的命令的文本文档。可以使用在命令行中调用任何命令。Docker通过读取Dockerfile中的指令自动生成映像。dockerfile是自定义镜像的一套规则dockerfile由多条指令构成,Dockerfile中的每一条指令都会对应于Docker镜像中的每一层。命令用于从Dockerfile构建映像。可以在docker build命令中使用-f标志指向文件系统中任何位置的Dockerfile。
2023-10-05 12:17:35 329
原创 Camera-IMU联合标定原理
在VIO系统中,camera-imu间内外参精确与否对整个定位精度起着重要的作用。所以良好的标定结果是定位系统的前提工作。目前标定算法主要分为离线和在线标定,离线标定以kalibr为代表,能够标定camera内参、camera-imu之间位移旋转、时间延时以及imu自身的刻度系数、非正交性等。标定过程中,kalibr 会使用 apriltag 作为视觉基准,利用非线性优化的方法优化视觉的重投影误差、角速度误差、加速度误差和 bias 误差,最后得到所需要的 IMU 和相机的外参数以及重力向量大小。除此之
2023-02-08 19:52:11 5381 2
原创 SLAM中的非线性优化和BA总结
非线性最小二乘问题,理解Gauss-Newton,Levenburg-Marquadt等下降策略,BA,图优化与g2o。
2022-06-07 19:39:59 684 1
原创 机器人学中的状态估计学习笔记(二)第三章线性高斯系统的状态估计
3.1 离散时间的批量估计问题3.1.1 问题定义 在离散时间线性时变系统中,定义运动和观测模型如下:运动方程:xk=Ak−1xk−1+vk+wk,k=1,...,K运动方程:x_{k} =A_{k-1} x_{k-1} +v_{k} +w_{k} , k=1,...,K运动方程:xk=Ak−1xk−1+vk+wk,k=1,...,K观测方程:yk=Ckxk+nk,k=0,...,K观测方程:y_{k} =C_{k} x_{k} +n_{k} ,k=0,...,K观测方程:yk=Ckxk
2022-05-13 20:53:29 1408
原创 机器人学中的状态估计学习笔记(一)第二章 概率论基础
所谓的状态估计问题,本质上是根据系统的先验模型和观测数据,对系统内部状态进行重新估计的问题。2.1 概率密度函数2.1.1 定义 定义x为区间[a,b]上的随机变量,服从某个概率密度函数p(x)p(x)p(x),那么该函数p(x)p(x)p(x)必须满足:∫abp(x)dx=1 \int_{a}^{b} p(x)dx=1 ∫abp(x)dx=1 p(x)p(x)p(x)函数的积分为1是为了满足全概率公理。 对于条件概率来说,假设p(x|y)表示自变量x∈\in∈[a,b]在条件y∈\in
2022-04-30 19:48:28 1119
原创 ROS入门的基本操作
ROS入门的基本操作 一、ROS命令行工具的使用 二、创建工作空间与功能包 创建工作空间的流程 创建功能包的流程 三、发布者Publisher的编程实现 如何实现一个发布者 如何配置CMakeLIsts.txt中的编译规则 编译并运行发布者(要进入到根目录进行编译) 四、订阅者Subscriber的编程实现
2022-04-26 21:28:44 2959
原创 SURF网格化特征点提取算法流程(三)
SURF网格化算法主要包括下面三个阶段:第一部分:特征点检测1、积分图像的生成2、构建Hessian(黑塞矩阵),生成所有的兴趣点,用于特征的提取3、尺度金字塔构造第二部分:特征点描述1、特征点方向的分配2、基于 Haar 小波的特征点描述子第三部分:SURF网格化的特征点提取1、SURF网格化特征点提取的算法思路2、SURF网格化处理前后的对比实验
2022-04-22 10:00:13 819 1
原创 SURF网格化特征点提取算法流程(一)
SURF网格化算法主要包括下面三个阶段:第一部分:特征点检测1、积分图像的生成2、构建Hessian(黑塞矩阵),生成所有的兴趣点,用于特征的提取3、尺度金字塔构造第二部分:特征点描述1、特征点方向的分配2、基于 Haar 小波的特征点描述子第三部分:SURF网格化的特征点提取1、SURF网格化特征点提取的算法思路2、SURF网格化处理前后的对比实验
2022-04-18 21:32:15 5075 1
原创 采用Cmake编译,VS联合Qt创建工程项目总结笔记
VS联合Qt创建工程项目总结笔记第一步,在项目文件下创建好.cpp、.h、.ui文件以及CMakeList.txt文件其中.ui文件是用vs中的qt拓展包创建的第二步,采用cmake工具编译,搭建好环境,按照提示信息执行就好了第三步:写好头文件#ifndef CAPTUREIAMGE_H//防卫式声明#define CAPTUREIAMGE_H#include <qmainwindow.h>#include <iostream>QT_BEGIN_NAMES
2021-04-04 15:38:27 1109
原创 相位误差来源总结笔记
相位误差来源总结笔记光栅图像 A/D 转换(由电压信号转换为数字信号)(电子元器件)的离散误差投影仪的非线性响应投影仪的离焦效应环境光误差第一,由计算机生成理想的标准正弦光栅 ,在投影仪将投射到被测物表面前需要先经过模数转换,该过程将产生离散化误差;第二,由于投影仪电信号的输入与输出具有非线性关系,导致非线性误差的产生;第三,投影仪大光圈镜头产生的短景深使得离焦效应无可避免;第四,在相机采集变形条纹图像时,环境光噪声也将随着被测物表面的反射光一起进入相机镜头,产生环境光误差。一、离散
2021-04-02 17:08:28 2921 1
原创 VS2019+OpenCV4.5.0+OpenCV_Contrib4.5.0+CMake3.19.1编译详解总结
VS2019+OpenCV4.5.0+OpenCV_Contrib4.5.0+CMake3.19.1编译总结在网上查找了很多编译方法,尝试了很多种方式,最终无果的情况的,经过不断地摸索,总结出了这样的一套编译方法。首先下载安装好VS2019、OpenCV4.5.0、OpenCV_Contrib4.5.0和CMake3.19.1。编译流程:第一步:建立MyBuild文件夹,将MyBuild、source(OpenCV4.5.0)和OpenCV_Contrib4.5.0三个文件夹放在同一级目录。第二
2021-04-02 09:23:15 910
转载 对于齐次坐标的理解
对于齐次坐标的理解一直对齐次坐标这个概念的理解不够彻底,只见大部分的书中说道“齐次坐标在仿射变换中非常的方便”,然后就没有了后文,今天在一个叫做“三百年 重生”的博客上看到一篇关于透视投影变换的探讨的文章,其中有对齐次坐标有非常精辟的说明,特别是针对这样一句话进行了有力的证明:“齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射(线性)几何变换。”—— F.S. Hill, JR。由于作者对齐次坐标真的解释的不错,我就原封不动的摘抄过来: 对于一个向量v以及基
2021-04-01 11:59:46 143
原创 工业相机与镜头基础知识总结笔记
工业相机与镜头基础知识总结笔记一、 焦距1.焦距变大,物体越近,视野逐渐变小2.焦距是物理概念,不可以变,由透镜本身决定。对焦距离可以变,通过改变透镜与CCD之间的距离来改变对焦距离3.最近对焦距离:指相机可以靠近被摄物体的最短距离,超过这个限度之后,镜头将无法对焦二、 弥散圆在焦点前后,光线开始聚焦和扩散,点的影像变成模糊的,形成一个扩大的圆,这个圆就叫做弥散圆。通常情况下,肉眼分辨率为二千分之一至五千分之一。人眼在明视距离(眼睛正前方30厘米)能够分辨的最小的物体大约为0.125mm。
2021-03-31 10:57:05 4318
原创 相机、镜头以及线激光器选型总结
相机、镜头以及线激光器选型总结一、 相机的选型:接口的选取精度要求二、 镜头的选型靶面尺寸要大于CCD尺寸接口要与相机一致三、 激光器的选型 根据你的需求来选取1.颜色/波段:如,绿色/520nm 2.功率要求:如,50mw 3.调制模式要求:如,ttl信号正向触发 4.聚焦位置(F):如,300mm 5.聚焦位置下的激光线长度(L): 如,100mm 6.最远工作距离(D2):如,500mm 7.最近工作距离(D1):如,1
2021-03-05 10:16:08 2657 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人