视觉SLAM十四讲中常用的性质
性质一: R R R、 e x p ( φ ∧ ) exp(\varphi^{\wedge } ) exp(φ∧)和 R e x p ( φ ∧ ) Rexp(\varphi^{\wedge } ) Rexp(φ∧)都代表旋转矩阵,旋转矩阵的逆和转置相等,所有的逆都相当于转置,即 ( R e x p ( φ ∧ ) ) − 1 = e x p ( φ ∧ ) − 1 R − 1 (Rexp(\varphi^{\wedge } ))^{-1}=exp(\varphi^{\wedge } )^{-1}R^{-1} (Rexp(φ∧))−1=exp(φ∧)−1R−1;
性质二:任意矩阵的指数映射可以写成一个泰勒展开,去掉高阶小量有: e x p ( φ ∧ ) = ∑ n = 0 ∞ 1 n ! ( φ ∧ ) n ≈ I + φ ∧ exp(\varphi ^{\wedge } )=\sum_{n=0}^{\infty } \frac{1}{n!} (\varphi ^{\wedge})^{n} \approx I+\varphi ^{\wedge } exp(φ∧)=∑n=0∞n!1(φ∧)n≈I+φ∧;
性质三:反对称矩阵的性质 ( φ ∧ ) T = − φ ∧ (\varphi ^{\wedge})^{T}=-\varphi ^{\wedge} (φ∧)T=−φ∧;
性质四: a × b = a ∧ b = − b × a = − b ∧ a a×b=a^{\wedge } b=-b×a=-b^{\wedge }a a×b=a∧b=−b×a=−b∧a
性质五: R p ∧ R T = ( R p ) ∧ Rp^{\wedge }R^{T}=(Rp)^{\wedge } Rp∧RT=(Rp)∧
性质六: R e x p ( p ∧ ) R T = e x p ( ( R p ) ∧ ) Rexp(p^{\wedge })R^{T}=exp((Rp)^{\wedge }) Rexp(p∧)RT=exp((Rp)∧)
性质七: l n ( R e x p ( φ ∧ ) ) ∨ = l n R ∨ + J r − 1 ( l n R ∨ ) φ ln(Rexp(\varphi ^{\wedge}))^{\vee }=lnR^{\vee }+J_{r}^{-1}(lnR^{\vee })\varphi ln(Rexp(φ∧))∨=lnR∨+Jr−1(lnR∨)φ
性质八:旋转矩阵R和向量a,有 R × a = R a × R R×a=Ra×R R×a=Ra×R
性质九:位姿变换矩阵 T = e x p ( ξ ∧ ) T=exp(\xi^{\wedge}) T=exp(ξ∧)
性质十:旋转矩阵R和向量a, R [ a ] ∧ = [ R a ] ∧ R R[a]^{\wedge}=[Ra]^{\wedge}R R[a]∧=[Ra]∧R
线性近似表格
当 x 0 ≈ 0 x_0≈0 x0≈0
时,带入线性近似公式得f(x)≈f(0)+f′(0)⋅x
f′ | f(0) | f′(0) | ||
---|---|---|---|---|
s i n x sinx sinx | c o s x cosx cosx | 0 | 1 | s i n x ≈ x sinx\approx x sinx≈x |
c o s x cosx cosx | − s i n x sinx sinx | 1 | 0 | c o s x ≈ 1 cosx\approx1 cosx≈1 |
e x e^x ex | e x e^x ex | 1 | 1 | e x ≈ 1 + x e^x\approx 1+x ex≈1+x |
l n ( 1 + x ) ln(1+x) ln(1+x) | $\frac{1}{1+x} $ | 0 | 1 | l n ( 1 + x ) ≈ x ln(1+x)\approx x ln(1+x)≈x |
( 1 + x ) r (1+x)^r (1+x)r | r ( 1 + x ) r − 1 r(1+x)^{r−1} r(1+x)r−1 | 1 | r | ( 1 + x ) r ≈ 1 + r x (1+x)^r\approx 1+rx (1+x)r≈1+rx |