视觉SLAM十四讲中常用的性质

视觉SLAM十四讲中常用的性质

性质一: R R R e x p ( φ ∧ ) exp(\varphi^{\wedge } ) exp(φ) R e x p ( φ ∧ ) Rexp(\varphi^{\wedge } ) Rexp(φ)都代表旋转矩阵,旋转矩阵的逆和转置相等,所有的逆都相当于转置,即 ( R e x p ( φ ∧ ) ) − 1 = e x p ( φ ∧ ) − 1 R − 1 (Rexp(\varphi^{\wedge } ))^{-1}=exp(\varphi^{\wedge } )^{-1}R^{-1} (Rexp(φ))1=exp(φ)1R1;

性质二:任意矩阵的指数映射可以写成一个泰勒展开,去掉高阶小量有: e x p ( φ ∧ ) = ∑ n = 0 ∞ 1 n ! ( φ ∧ ) n ≈ I + φ ∧ exp(\varphi ^{\wedge } )=\sum_{n=0}^{\infty } \frac{1}{n!} (\varphi ^{\wedge})^{n} \approx I+\varphi ^{\wedge } exp(φ)=n=0n!1(φ)nI+φ

性质三:反对称矩阵的性质 ( φ ∧ ) T = − φ ∧ (\varphi ^{\wedge})^{T}=-\varphi ^{\wedge} (φ)T=φ

性质四: a × b = a ∧ b = − b × a = − b ∧ a a×b=a^{\wedge } b=-b×a=-b^{\wedge }a a×b=ab=b×a=ba

性质五: R p ∧ R T = ( R p ) ∧ Rp^{\wedge }R^{T}=(Rp)^{\wedge } RpRT=(Rp)

性质六: R e x p ( p ∧ ) R T = e x p ( ( R p ) ∧ ) Rexp(p^{\wedge })R^{T}=exp((Rp)^{\wedge }) Rexp(p)RT=exp((Rp))

性质七: l n ( R e x p ( φ ∧ ) ) ∨ = l n R ∨ + J r − 1 ( l n R ∨ ) φ ln(Rexp(\varphi ^{\wedge}))^{\vee }=lnR^{\vee }+J_{r}^{-1}(lnR^{\vee })\varphi ln(Rexp(φ))=lnR+Jr1(lnR)φ

性质八:旋转矩阵R和向量a,有 R × a = R a × R R×a=Ra×R R×a=Ra×R

性质九:位姿变换矩阵 T = e x p ( ξ ∧ ) T=exp(\xi^{\wedge}) T=exp(ξ)

性质十:旋转矩阵R和向量a, R [ a ] ∧ = [ R a ] ∧ R R[a]^{\wedge}=[Ra]^{\wedge}R R[a]=[Ra]R

线性近似表格

x 0 ≈ 0 x_0≈0 x00

时,带入线性近似公式得f(x)≈f(0)+f′(0)⋅x

ff(0)f′(0)
s i n x sinx sinx c o s x cosx cosx01 s i n x ≈ x sinx\approx x sinxx
c o s x cosx cosx s i n x sinx sinx10 c o s x ≈ 1 cosx\approx1 cosx1
e x e^x ex e x e^x ex11 e x ≈ 1 + x e^x\approx 1+x ex1+x
l n ( 1 + x ) ln(1+x) ln(1+x)$\frac{1}{1+x} $01 l n ( 1 + x ) ≈ x ln(1+x)\approx x ln(1+x)x
( 1 + x ) r (1+x)^r (1+x)r r ( 1 + x ) r − 1 r(1+x)^{r−1} r(1+x)r11r ( 1 + x ) r ≈ 1 + r x (1+x)^r\approx 1+rx (1+x)r1+rx
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值