有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
示例 1:
输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2
示例 2:
输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3
提示:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j] 为 1 或 0
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]
class Solution {
public int findCircleNum(int[][] isConnected) {
int n=isConnected.length;
int []s=new int[n];//1<=n<=200
int []height=new int[n];//树的高度
for(int i=0;i<n;i++){//初始化
s[i]=i;
height[i]=0;
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(isConnected[i][j]==1&&i!=j){
union_set(i,j,s,height);
}
}
}
int ans=0;
for(int i=0;i<n;i++){
if(s[i]==i){
ans++;
}
}
return ans;
}
//合并优化---通过将低的树以高的树的树根为根点来减少树的高度
void union_set(int i,int j,int s[],int height[]){
int x=find_set(i,s);
int y=find_set(j,s);
if(height[x]==height[y]){//相同的高度会以其中一个为树根
s[x]=y;
}else{
if(height[x]<height[y]){
s[x]=y;
}else{
s[y]=x;
}
}
}
//路径压缩优化
int find_set(int x,int s[]){
int r = x;
while(s[r]!=r){
r=s[r];
}//找根节点
int i=x,j;
while(i!=r){
j=s[i];
s[i]=r;
i=j;
}
return r;
}
}