【无标题】eval-scope 自定义数据集-翻译

测试数据

CUDA_VISIBLE_DEVICES=1 python -m llmuses.run --model qwen/Qwen2-7B-Instruct --template-type qwen --datasets custom_dialog --dataset-hub Local --dataset-args '{"custom_dialog": {"local_path": "/root/eval-scope/data/custom_dialog","subset_list":["basic"]}}' --dataset-dir /root/eval-scope/data/




python llmuses/run.py --model qwen/Qwen2-7B-Instruct --template-type qwen --datasets arc  --dataset-hub Local --dataset-args '{"arc": {"local_path": "/root/eval-scope/data/arc"}}' --dataset-dir /root/eval-scope/data/



custom_dialog
__init__.py
# Copyright (c) Alibaba, Inc. and its affiliates.

from llmuses.benchmarks.custom_dialog.custom_dialog_adapter import DATASET_ID, SUBSET_LIST, CustomDialogAdapter
from llmuses.benchmarks.custom_dialog.custom_dialog_adapter import CustomDialogAdapter as DataAdapterClass
from llmuses.models.model_adapter import ChatGenerationModelAdapter as ModelAdapterClass  # noqa
custom_dialog.py
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright (c) Allen Institute, and its affiliates.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.

"""AI2 ARC (Abstraction and Reasoning Corpus) for General Artificial Intelligence Benchmark."""

"""AUTO GENERATED, DO NOT EDIT"""

import json
import os
import datasets

# flake8: noqa


_CITATION = """\
@article{allenai:arc,
      author    = {Peter Clark  and Isaac Cowhey and Oren Etzioni and Tushar Khot and
                    Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
      title     = {Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
      journal   = {arXiv:1803.05457v1},
      year      = {2018},
}
"""

_DESCRIPTION = """\
A new dataset of 7,787 genuine grade-school level, multiple-choice science questions, assembled to encourage research in
 advanced question-answering. The dataset is partitioned into a Challenge Set and an Easy Set, where the former contains
 only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. We are also
 including a corpus of over 14 million science sentences relevant to the task,
 and an implementation of three neural baseline models for this dataset. We pose ARC as a challenge to the community.

ARC-Easy:
    train: 2251
    test: 2376
    validation: 570

ARC-Challenge:
    train: 1119
    test: 1172
    validation: 299
"""

_URL = 'https://modelscope.oss-cn-beijing.aliyuncs.com/open_data/arc/ARC-V1-Feb2018.zip'

# tasks: ['ARC-Easy', 'ARC-Challenge']


class CustomDialogConfig(datasets.BuilderConfig):
    """BuilderConfig for Ai2ARC."""

    def __init__(self, **kwargs):
        """BuilderConfig for Ai2Arc.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(CustomDialogConfig, self).__init__(version=datasets.Version('1.0.0', ''), **kwargs)


class CustomDialog(datasets.GeneratorBasedBuilder):
    """
    The AI2 Reasoning Challenge (ARC) dataset.
    Subset: ARC-Easy, AR
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值