16、帕利耶概率公钥系统的推广、简化及应用

帕利耶概率公钥系统的推广、简化及应用

引言

帕利耶提出了一种基于 $Z_{n^2}^*$ 群运算的概率加密方案,该方案具有同态性、能以恒定扩展因子一次加密多位比特且解密高效等优点。本文提出了对帕利耶方案的推广,使用模 $n^{s + 1}$ 的运算($s \geq 1$),同时证明了推广后的系统与原系统具有相同的安全性。

推广后的系统有诸多优势,它可以简化系统,使公钥仅由模数 $n$ 组成,这样在公钥固定后仍能自由选择加密的块长度,且不损失同态性,还能将扩展因子从原系统的 2 降至接近 1。

此外,还构建了推广方案的门限变体,允许多个服务器共享私钥,只有足够数量的服务器子集才能解密密文,而较小的子集则无法获取有用信息。同时提出了零知识证明协议,用于证明给定密文加密了给定的明文,以及验证加密值之间的乘法关系而不泄露额外信息。

这些构建模块可应用于电子投票方案。现有的电子投票方案众多,其中 Cramer、Gennaro 和 Schoenmakers 提出的方案在选民所需工作量方面较为高效。该方案提供了一个通用框架,允许使用任何具有“良好”属性(特别是同态性)的概率加密方案对选票进行加密。但帕利耶方案应用于该框架时,缺少一些重要的构建模块,如高效的选票有效性证明和高效的门限变体。本文正好提供了这些构建模块,从而得到一个新的投票协议,该协议在产生最终结果所需的工作量上大幅减少。

相关工作
  • Fouque、Poupard 和 Stern 的工作 :他们独立且更早地提出了帕利耶原始方案的第一个门限版本,使用了 Shoup 的门限 RSA 方案的改编,但与本文构建的广义密码系统的门
内容概要:本文详细介绍了一个基于C++的城市停车需求分析平台的设计与实现,旨在通过科学化手段解决城市停车资源紧张、管理低效等问题。平台采用模块化架构,涵盖数据采集与融合、实时流式处理、数据存储与管理、智能分析与预测、可视化交互、安全防护、系统集成及运维监控八大核心模块。通过C++高性能特性支持高并发、实时数据处理与复杂算法运算,结合时间序列预测(如加权移动平均)、聚类分析(KMeans)等算法实现停车需求预测与热点区域识别,并提供开放API接口支持系统扩展与外部集成。文中还给出了关键模块的C++代码示例,包括数据清洗、多线程处理、数据查询与权限管理等。; 适合人群:具备C++编程基础、熟悉数据结构与算法的软件开发人员、城市交通系统研究人员及智慧城市相关领域的技术人员,尤其适合从事大数据处理、智能交通系统开发的1-5年经验从业者; 使用场景及目标:①构建高性能城市级停车资源管理平台,实现停车数据的实时采集、分析与预测;②为政府提供科学决策支持,优化停车设施布局与交通政策;③提升市民出行效率,减少道路拥堵与碳排放;④作为智慧城市建设中交通子系统的参考架构与技术实现方案; 阅读建议:此资源不仅提供完整的系统设计思路与模型描述,还包含可运行的关键代码片段,建议读者结合实际开发环境动手实践,深入理解各模块间的协同机制,并在此基础上进行功能扩展与性能优化,以适应不同城市规模与业务需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值