二次时间内列出所有排序反转
1. 背景与问题提出
在处理排序反转问题时,当存在不良组件时,寻找排序反转集的现有算法复杂度较高。虽然有 $O(n^3)$ 的算法来寻找排序反转集,但平均情况下复杂度为 $O(n^2)$ ,且能在线性时间内检测不良组件的存在。我们关注的是对不对应于不良组件的 FCIs 进行排序的瓶颈,即会创建不良组件的循环分裂反转(非排序反转)。
相关定义
- 不良反转 :创建不良组件的反转。
- 不安全反转 :不良的循环分裂反转。
例如,在某个排列中,反转 $\rho(6,8)$ 可能就是不安全的。
传统算法会逐个检查潜在的 $\Omega(n^2)$ 个循环分裂反转是否安全,而我们采用相反的方法,即预测哪些反转可能不安全并避免列出它们。具体做法是,先刻画排列中的不祥子串,即那些通过一次反转可能变成不良组件的子串。
2. 不祥子串
2.1 单组件排列的不祥子串
一个排列的子串是不祥子串,当且仅当存在元素 $e$ 和 $f$ ,使得该子串符合以下模板(或其反转):
1. $(eAX -f -B)$:其中 $A$、$-B$ 和 $X$ 是排列的子串,$A$ 仅含正元素,$-B$ 仅含负元素。
2. $(-A -eXBf)$:其中 $-A$、$B$ 和 $X$ 是排列的子串,$-A$ 仅含负元素,$B$ 仅含正元素,且 $e$ 为负。
3. $(eA -BC f)$:其中 $A$、$-B$ 和 $C$ 是排列的子串
订阅专栏 解锁全文
5371

被折叠的 条评论
为什么被折叠?



