✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统状态估计(State Estimation, SE)是电力系统运行控制的基础,它利用实时测量数据,计算出系统当前运行状态,即各个节点的电压幅值和相角。准确的状态估计是保证电力系统安全、稳定、经济运行的关键。在众多状态估计算法中,加权最小二乘法(Weighted Least Squares, WLS)由于其算法简单、计算效率高、鲁棒性好等优点,被广泛应用于实际电力系统状态估计中。本文将深入探讨基于加权最小二乘法的电力系统状态估计,并着重分析在测量数据包括电压幅值、功率注入和功率流的情况下,WLS算法的具体应用和潜在问题。
一、电力系统状态估计模型
电力系统状态估计的目标是根据系统拓扑结构、元件参数以及实时测量数据,估计出系统中所有节点的电压幅值和相角。数学上,状态估计问题可以描述为一个非线性方程组:
z = h(x) + v
其中:
- z
是测量向量,包含了各种类型的测量值,例如节点电压幅值、线路功率流、节点功率注入等。
- x
是状态向量,通常由所有节点的电压幅值和相角组成,这是状态估计的目标。
- h(x)
是测量函数向量,描述了状态向量 x 与测量向量 z 之间的非线性关系。这些关系来源于电力系统潮流方程。
- v
是测量误差向量,代表测量过程中不可避免的误差,通常假设服从正态分布,均值为零,方差为已知。
二、加权最小二乘法原理
加权最小二乘法(WLS)的核心思想是最小化测量值与估计值之间的加权残差平方和。其目标函数可以表示为:
J(x) = [z - h(x)]<sup>T</sup>R<sup>-1</sup>[z - h(x)]
其中:
- R
是测量误差协方差矩阵,反映了各个测量量的精度。对角线元素代表各个测量的方差,非对角线元素代表测量量之间的相关性(通常忽略相关性,R为对角矩阵)。
- R<sup>-1</sup>
是R的逆矩阵,作为权重矩阵,体现了不同测量对状态估计结果的影响。精度较高的测量对应较高的权重,而精度较低的测量对应较低的权重。
求解状态估计问题,即寻找状态向量 x,使得目标函数 J(x) 达到最小值。由于测量函数 h(x) 的非线性特性,通常采用迭代算法求解。最常用的迭代算法是高斯-牛顿法(Gauss-Newton Method)。
三、高斯-牛顿迭代法
高斯-牛顿法是一种迭代求解非线性最小二乘问题的优化算法。其迭代公式如下:
x<sub>k+1</sub> = x<sub>k</sub> + Δx<sub>k</sub>
其中:
- x<sub>k</sub>
是第k次迭代的状态向量估计值。
- Δx<sub>k</sub>
是第k次迭代的状态向量修正量,可以通过求解以下线性方程组得到:
(H<sup>T</sup>(x<sub>k</sub>)R<sup>-1</sup>H(x<sub>k</sub>))Δx<sub>k</sub> = H<sup>T</sup>(x<sub>k</sub>)R<sup>-1</sup>[z - h(x<sub>k</sub>)]
其中:
- H(x<sub>k</sub>)
是测量函数向量 h(x) 对状态向量 x 在 x<sub>k</sub> 处的雅可比矩阵,也称为灵敏度矩阵。其元素代表了测量值对状态变量变化的敏感程度。
该线性方程组又被称为正规方程组。求解正规方程组的关键在于构建雅可比矩阵 H(x<sub>k</sub>)。雅可比矩阵的元素取决于测量函数的具体形式,而测量函数又取决于所使用的测量量类型,例如电压幅值、功率注入和功率流。
四、测量量模型及雅可比矩阵构建
在电力系统状态估计中,常用的测量量包括电压幅值、功率注入和功率流。下面分别介绍这些测量量的模型及其对应的雅可比矩阵元素的计算方法。
-
电压幅值 (V<sub>i</sub>)
电压幅值是最基本的测量量,直接反映了节点电压的大小。测量函数为:
z<sub>i</sub> = V<sub>i</sub>
其中 V<sub>i</sub> 是节点 i 的电压幅值。
雅可比矩阵元素:
∂z<sub>i</sub>/∂V<sub>i</sub> = 1∂z<sub>i</sub>/∂δ<sub>i</sub> = 0∂z<sub>i</sub>/∂V<sub>j</sub> = 0 (j ≠ i)∂z<sub>i</sub>/∂δ<sub>j</sub> = 0 (j ≠ i)
其中 δ<sub>i</sub> 是节点 i 的电压相角。
-
功率注入 (P<sub>i</sub>, Q<sub>i</sub>)
功率注入是指节点 i 注入的功率。测量函数为:
P<sub>i</sub> = V<sub>i</sub> Σ<sub>j∈N(i)</sub> V<sub>j</sub>(G<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + B<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))Q<sub>i</sub> = V<sub>i</sub> Σ<sub>j∈N(i)</sub> V<sub>j</sub>(G<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - B<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))
其中:
雅可比矩阵元素:
∂P<sub>i</sub>/∂V<sub>i</sub> = Σ<sub>j∈N(i)</sub> V<sub>j</sub>(G<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + B<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>)) + V<sub>i</sub>G<sub>ii</sub>∂P<sub>i</sub>/∂δ<sub>i</sub> = V<sub>i</sub> Σ<sub>j∈N(i)</sub> V<sub>j</sub>(-G<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) + B<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))∂P<sub>i</sub>/∂V<sub>j</sub> = V<sub>i</sub>(G<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + B<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))∂P<sub>i</sub>/∂δ<sub>j</sub> = V<sub>i</sub>V<sub>j</sub>(G<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - B<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))
∂Q<sub>i</sub>/∂V<sub>i</sub> = Σ<sub>j∈N(i)</sub> V<sub>j</sub>(G<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - B<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>)) - V<sub>i</sub>B<sub>ii</sub>∂Q<sub>i</sub>/∂δ<sub>i</sub> = V<sub>i</sub> Σ<sub>j∈N(i)</sub> V<sub>j</sub>(G<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + B<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))∂Q<sub>i</sub>/∂V<sub>j</sub> = V<sub>i</sub>(G<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - B<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))∂Q<sub>i</sub>/∂δ<sub>j</sub> = -V<sub>i</sub>V<sub>j</sub>(G<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + B<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))
-
N(i) 是与节点 i 相连的节点集合。
-
G<sub>ij</sub> 和 B<sub>ij</sub> 是节点 i 和节点 j 之间的电导和电纳。
-
-
功率流 (P<sub>ij</sub>, Q<sub>ij</sub>)
功率流是指线路 i-j 从节点 i 流向节点 j 的功率。测量函数为:
P<sub>ij</sub> = V<sub>i</sub><sup>2</sup>g<sub>ij</sub> - V<sub>i</sub>V<sub>j</sub>(g<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + b<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))Q<sub>ij</sub> = -V<sub>i</sub><sup>2</sup>b<sub>ij</sub> - V<sub>i</sub>V<sub>j</sub>(g<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - b<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>)) - V<sub>i</sub><sup>2</sup>b<sub>sh</sub>
其中:
雅可比矩阵元素:
∂P<sub>ij</sub>/∂V<sub>i</sub> = 2V<sub>i</sub>g<sub>ij</sub> - V<sub>j</sub>(g<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + b<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))∂P<sub>ij</sub>/∂δ<sub>i</sub> = V<sub>i</sub>V<sub>j</sub>(g<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - b<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))∂P<sub>ij</sub>/∂V<sub>j</sub> = -V<sub>i</sub>(g<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + b<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))∂P<sub>ij</sub>/∂δ<sub>j</sub> = -V<sub>i</sub>V<sub>j</sub>(g<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - b<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))
∂Q<sub>ij</sub>/∂V<sub>i</sub> = -2V<sub>i</sub>b<sub>ij</sub> - V<sub>j</sub>(g<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - b<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>)) - 2V<sub>i</sub>b<sub>sh</sub>∂Q<sub>ij</sub>/∂δ<sub>i</sub> = -V<sub>i</sub>V<sub>j</sub>(g<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + b<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))∂Q<sub>ij</sub>/∂V<sub>j</sub> = -V<sub>i</sub>(g<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>) - b<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>))∂Q<sub>ij</sub>/∂δ<sub>j</sub> = V<sub>i</sub>V<sub>j</sub>(g<sub>ij</sub>cos(δ<sub>i</sub>-δ<sub>j</sub>) + b<sub>ij</sub>sin(δ<sub>i</sub>-δ<sub>j</sub>))
需要注意的是,雅可比矩阵的构建依赖于系统拓扑结构和元件参数。对于大型电力系统,雅可比矩阵通常是稀疏矩阵,可以采用稀疏矩阵存储和计算技术来提高计算效率。
-
g<sub>ij</sub> 和 b<sub>ij</sub> 是线路 i-j 的串联电导和串联电纳。
-
b<sub>sh</sub> 是线路 i-j 的并联电纳。
-
五、WLS算法的应用流程
基于加权最小二乘法的电力系统状态估计的一般流程如下:
- 数据准备:
收集电力系统拓扑结构数据、元件参数数据以及实时测量数据(电压幅值、功率注入、功率流等)。
- 初始化:
选择初始状态向量 x<sub>0</sub>。 通常可以采用平启动方式,即所有节点电压幅值为1.0 pu,相角为0度。
- 迭代计算:
a. 计算测量函数向量 h(x<sub>k</sub>)。b. 计算雅可比矩阵 H(x<sub>k</sub>)。c. 求解正规方程组 (H<sup>T</sup>(x<sub>k</sub>)R<sup>-1</sup>H(x<sub>k</sub>))Δx<sub>k</sub> = H<sup>T</sup>(x<sub>k</sub>)R<sup>-1</sup>[z - h(x<sub>k</sub>)],得到状态向量修正量 Δx<sub>k</sub>。d. 更新状态向量:x<sub>k+1</sub> = x<sub>k</sub> + Δx<sub>k</sub>。
- 收敛判断:
检查迭代是否收敛。常用的收敛判据包括:a. |Δx<sub>k</sub>|<sub>max</sub> < ε (最大状态变量修正量小于阈值)。b. |J(x<sub>k+1</sub>) - J(x<sub>k</sub>)| < ε (目标函数变化量小于阈值)。如果满足收敛判据,则算法结束,x<sub>k+1</sub> 为最终的状态估计结果。 否则,返回步骤3,进行下一次迭代。
- 结果分析:
对状态估计结果进行分析,例如检查电压越限情况、
⛳️ 运行结果
🔗 参考文献
[1]牛胜锁,刘颖,梁志瑞,等.基于广域测量和抗差最小二乘法的电力系统谐波状态估计[J].电力系统保护与控制, 2012, 40(8):5.DOI:10.3969/j.issn.1674-3415.2012.08.002.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇