【DC-DC】基于改进PCB数理分析热建模方法的考虑辐射传热和元件温度计算研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电子设备的功率密度不断提高,其产生的热量问题日益突出,对设备的可靠性及寿命产生显著影响。印刷电路板(PCB)作为电子设备的核心载体,其热管理至关重要。传统的PCB热分析方法往往计算量大、耗时长或精度不足。本文针对此问题,提出一种改进的基于PCB数理分析的热建模方法,该方法重点关注辐射传热的贡献,并致力于精确计算元件温度。通过改进传热系数的计算,引入简化的辐射模型,并结合有限差分法,实现了对PCB温度场的快速且准确的预测。

关键词:PCB热分析;数理分析;辐射传热;元件温度;有限差分法

1. 引言

随着电子技术的飞速发展,电子产品的体积日益缩小,功能却日益强大,这导致了功率密度的急剧上升。高功率密度带来的直接后果就是设备内部温度的升高,从而影响电子元件的性能和可靠性。过高的温度可能加速元件的老化,降低使用寿命,甚至导致系统失效。因此,热管理成为了电子设备设计中一个至关重要的环节。

印刷电路板(PCB)作为电子元件的载体和互连媒介,在散热方面扮演着举足轻重的角色。PCB上的元件发热量各异,布局密集,热传递路径复杂,使得PCB的热分析成为一项具有挑战性的任务。准确的PCB热分析能够帮助工程师优化元件布局,改进散热设计,从而确保电子设备的正常运行。

传统的PCB热分析方法主要包括实验测试、数值模拟和解析分析。实验测试成本高昂,耗时较长,且难以覆盖所有可能的工况。数值模拟方法,如有限元分析(FEA),虽然精度较高,但计算量庞大,对计算资源要求高,设计周期长。解析分析方法,则相对快速,但通常需要简化模型,忽略一些关键因素,导致精度不足。

为了克服上述方法的局限性,本文提出一种改进的基于PCB数理分析的热建模方法,旨在实现PCB温度场的快速且准确的预测。该方法重点关注了辐射传热的贡献,并在元件温度计算方面进行了改进。

2. 相关研究现状

PCB热分析领域的研究已取得显著进展。早期的研究主要集中在利用有限差分法(FDM)或有限元法(FEM)对PCB进行数值模拟。这些方法能够精确地模拟复杂的几何结构和边界条件,但计算量巨大,难以满足快速设计的需求。

随着计算机技术的进步,基于热网络的解析分析方法得到了广泛应用。热网络方法将PCB划分为若干节点,利用等效热阻和热容来描述热传递过程。该方法计算速度快,但精度相对较低,尤其是在考虑辐射传热和复杂元件布局时。

近年来,一些研究人员尝试将数值模拟和解析分析相结合,以提高计算效率和精度。例如,一些方法采用有限差分法对PCB进行粗略的网格划分,然后利用解析解计算每个网格的温度。另一些方法则利用有限元分析对关键元件进行精细建模,然后将结果嵌入到热网络模型中。

尽管这些方法在一定程度上提高了计算效率,但仍然存在一些不足。例如,许多方法忽略了辐射传热的贡献,或者采用过于简化的辐射模型。此外,一些方法在计算元件温度时,没有充分考虑元件内部的热阻和热容。

3. 基于改进PCB数理分析的热建模方法

本文提出的改进方法,旨在解决上述问题,实现PCB温度场的快速且准确的预测。该方法的核心思想是基于数理分析,结合简化的辐射模型和有限差分法,并对元件温度计算进行优化。

3.1 PCB模型的简化

为了降低计算复杂度,首先需要对PCB模型进行简化。本文将PCB视为一个多层复合材料板,并假设每一层材料的导热系数是均匀的。PCB上的元件被视为热源,其发热量可以根据实际情况进行设定。

为了简化辐射传热的计算,本文将PCB表面划分为若干个小的表面单元,并假设每个表面单元的温度是均匀的。相邻的表面单元之间存在辐射传热,可以通过辐射换热系数进行描述。

3.2 热传递方程

PCB的热传递过程包括导热、对流和辐射三种形式。导热是热量在PCB内部通过分子热运动传递的过程。对流是热量通过空气的流动传递的过程。辐射是热量通过电磁波传递的过程。

3.3 辐射传热的考虑

辐射传热在PCB的热分析中扮演着重要的角色,尤其是在高功率密度的情况下。传统的PCB热分析方法往往忽略了辐射传热的贡献,或者采用过于简化的辐射模型。

本文采用简化的辐射模型,将PCB表面划分为若干个小的表面单元,并假设每个表面单元的温度是均匀的。相邻的表面单元之间存在辐射传热,可以通过辐射换热系数进行描述。

3.4 元件温度计算

PCB上的元件是主要的热源,其温度直接影响着设备的性能和可靠性。传统的PCB热分析方法往往忽略了元件内部的热阻和热容,导致元件温度计算不准确。

本文采用一种改进的元件温度计算方法,充分考虑了元件内部的热阻和热容。元件内部的热阻可以分为结到壳热阻(Rjc)和壳到环境热阻(Rca)。结到壳热阻表示热量从元件的芯片传递到元件外壳的阻力。壳到环境热阻表示热量从元件外壳传递到周围环境的阻力。

3.5 改进算法流程

  1. 模型建立:

     建立PCB的几何模型,包括PCB的尺寸、材料、层数、元件位置等信息。

  2. 网格划分:

     对PCB进行网格划分,选择合适的网格尺寸,以保证计算精度和效率。

  3. 参数设置:

     设置PCB材料的导热系数、密度、比热容等热物性参数,以及元件的功耗、结到壳热阻、壳到环境热阻等参数。

  4. 计算传热系数:

     计算PCB表面与周围环境之间的对流换热系数和辐射换热系数。

  5. 求解温度场:

     利用有限差分法求解PCB的稳态热平衡方程,得到PCB的温度场分布。

  6. 元件温度计算:

     根据元件的功耗和热阻,计算元件的结温。

  7. 结果分析:

     对计算结果进行分析,评估PCB的散热性能,并提出改进建议。

4. 结论与展望

本文提出了一种改进的基于PCB数理分析的热建模方法,该方法重点关注辐射传热的贡献,并致力于精确计算元件温度。通过改进传热系数的计算,引入简化的辐射模型,并结合有限差分法,实现了对PCB温度场的快速且准确的预测。

本文提出的方法具有以下优点:

  • 计算速度快,适用于快速设计和优化。

  • 计算资源占用少,可以在普通PC上运行。

  • 精度较高,能够满足工程需求。

未来研究方向包括:

  • 进一步优化辐射模型的精度。

  • 考虑瞬态热分析,研究PCB温度随时间的变化。

  • 将该方法应用于更复杂的PCB结构。

  • 将该方法与热仿真软件集成,提供更强大的热分析功能。

⛳️ 运行结果

🔗 参考文献

[1] 袁满.集成型升华驱动冷板热质传递特性研究[D].华北水利水电大学,2020.

[2] 吴晓文,舒乃秋,李洪涛,等.基于流体多组分传输的气体绝缘母线温度场数值计算与分析[J].中国电机工程学报, 2012, 32(33):7.DOI:CNKI:SUN:ZGDC.0.2012-33-019.

[3] 韩云龙,章名耀,程相杰,等.乙烯裂解炉内燃烧、传热与裂解反应的模拟计算[J].石油学报(石油加工), 2006.DOI:JournalArticle/5ae9da8dc095d713d89950a9.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值