【光学】FDTD方法中的完美匹配层(PML)研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

有限差分时域(Finite-Difference Time-Domain, FDTD)方法作为一种直接求解麦克斯韦方程组的时域数值方法,在计算电磁学领域占据着重要的地位。其因算法简洁、适用性广等优点,被广泛应用于微波工程、光子学、生物电磁学等诸多领域。然而,FDTD方法本质上是一种基于截断空间的计算方法。为了模拟开放空间的问题,必须对计算区域进行截断。在截断边界处,电磁波必须能够被无反射地吸收,从而避免反射波干扰计算结果,这便引出了完美匹配层(Perfectly Matched Layer, PML)的概念。PML作为一种高效的吸收边界条件,极大地扩展了FDTD方法的应用范围,并成为FDTD仿真中不可或缺的关键技术。本文将深入研究FDTD方法中PML的原理、发展历程、各种实现方式及其优化方法,旨在全面阐述PML在FDTD方法中的重要作用和研究现状。

一、PML的原理与发展历程

理想情况下,吸收边界条件应该能够完全吸收所有入射电磁波,而没有任何反射。然而,传统的吸收边界条件,如Mur吸收边界条件、Silver-Muller吸收边界条件等,都存在一定的局限性,例如对入射角度和频率的敏感性,导致其在复杂电磁环境下难以达到理想的吸收效果。

1994年,Bérenger首次提出了PML的概念。PML的核心思想是构建一种具有特殊电磁参数的吸收层,使得进入该层的电磁波的传播特性发生改变,从而在传播过程中被逐渐衰减吸收。Bérenger PML的巧妙之处在于,它将电场和磁场分别分解为两个分量,并且引入了介电常数和磁导率两个复参数,使得电磁波在进入PML层后,在各个方向上都会被指数衰减。这种衰减与入射角度和频率无关,从而实现了近乎完美的吸收效果。

Bérenger PML的提出,在计算电磁学领域引起了巨大的反响。它极大地改善了FDTD方法的精度和效率,使其能够更好地应用于各种复杂的电磁问题。然而,Bérenger PML也存在一些缺陷,例如在某些特定情况下会出现数值不稳定性,并且对于某些材料介质,其吸收效果并不理想。

为了克服Bérenger PML的局限性,科研人员不断对其进行改进和优化。其中,最重要的一项改进是Uniaxial PML (UPML)的提出。UPML将PML的电磁参数设置为单轴各向异性,从而可以避免Bérenger PML中出现的虚假反射问题,并提高其数值稳定性。随后,Constitutive PML (CPML)的出现进一步提升了PML的性能。CPML通过直接控制本构关系,从而可以更加灵活地设计PML的电磁参数,使其能够更好地适应各种材料介质和复杂的电磁环境。

二、各种PML的实现方式

在FDTD方法中,PML的实现方式主要分为两种:分裂场法(Split-field formulation)和辅助微分方程法(Auxiliary Differential Equation, ADE)。

  • 分裂场法: 分裂场法是Bérenger PML采用的最初的实现方式。它将电场和磁场分别分解为两个分量,然后分别对其进行差分运算。这种方法实现起来比较简单,但是需要增加计算量和存储空间。此外,分裂场法容易受到网格的限制,需要进行细致的网格剖分才能保证计算精度。

  • 辅助微分方程法: 辅助微分方程法是一种更加灵活和高效的PML实现方式。它不需要对电场和磁场进行分解,而是通过引入辅助变量和辅助微分方程来模拟PML的吸收特性。ADE法可以避免分裂场法中的虚假反射问题,并提高数值稳定性。同时,ADE法可以更加方便地实现各种类型的PML,例如UPML和CPML。

除了上述两种主要的实现方式之外,还有一些其他的PML实现方式,例如完美电导层(Perfect Electric Conductor, PEC)和完美磁导层(Perfect Magnetic Conductor, PMC)相结合的方法,以及基于伪谱法(Pseudospectral Time-Domain, PSTD)的PML等。这些方法各有优缺点,适用于不同的应用场景。

三、PML的优化方法

为了进一步提高PML的性能,科研人员提出了各种优化方法,主要集中在以下几个方面:

  • PML参数优化: PML的电磁参数对其吸收效果有很大的影响。通过优化PML的电磁参数,可以使其更好地适应各种材料介质和复杂的电磁环境。常见的PML参数优化方法包括梯度下降法、遗传算法等。

  • PML厚度优化: PML的厚度对其吸收效果和计算效率都有影响。PML的厚度过小,则吸收效果不佳;PML的厚度过大,则会增加计算量和存储空间。因此,需要根据具体的应用场景,对PML的厚度进行优化。

  • PML阶数优化: 对于ADE-PML,其辅助微分方程的阶数对其性能有重要影响。高阶PML通常具有更好的吸收效果,但同时也需要更多的计算量。因此,需要根据具体的应用场景,对PML的阶数进行优化。

  • 非均匀网格技术: 在PML区域采用非均匀网格技术,可以减少计算量和存储空间,同时保证计算精度。例如,在PML区域的外部采用较粗的网格,而在PML区域的内部采用较细的网格,可以有效地提高计算效率。

四、PML的应用领域

PML作为一种高效的吸收边界条件,在FDTD方法中得到了广泛的应用。主要应用领域包括:

  • 光子学: PML可以用于模拟光波导、光子晶体、超材料等光子器件的电磁特性。通过PML可以消除边界反射,从而得到准确的计算结果。

  • 微波工程: PML可以用于模拟天线、微波电路、雷达等微波器件的电磁特性。通过PML可以模拟开放空间的辐射,从而评估器件的性能。

  • 生物电磁学: PML可以用于模拟生物组织的电磁特性。通过PML可以模拟生物组织的电磁辐射和吸收,从而评估电磁辐射对人体健康的影响。

  • 遥感技术: PML可以用于模拟电磁波在地球表面传播的特性。通过PML可以模拟电磁波的散射和反射,从而提高遥感数据的精度。

五、结论与展望

完美匹配层(PML)作为FDTD方法中一种至关重要的吸收边界条件,其发展历程见证了计算电磁学领域的不断进步。从最初的Bérenger PML到现在的CPML,PML的性能得到了不断的提升,其应用范围也越来越广泛。

未来,PML的研究将继续朝着以下几个方向发展:

  • 宽频带和宽角度吸收:

     针对复杂电磁环境,设计能够实现宽频带和宽角度吸收的PML。

  • 低存储和高效计算:

     研究更加高效的PML实现方式,降低计算量和存储空间。

  • 自适应PML:

     开发能够根据入射电磁波的特性自动调整参数的自适应PML。

  • 与其他数值方法的结合:

     将PML与其他数值方法相结合,例如有限元方法、矩量法等,从而扩展其应用范围。

⛳️ 运行结果

🔗 参考文献

[1] 苏丁.基于完美匹配层边界的并行FDTD算法及其在光子集成中的应用研究[D].南京理工大学,2014.DOI:10.7666/d.Y2522099.

[2] 徐先蓬.PML-FDTD方法在分析二维负折射率材料中的应用[D].山东大学,2007.DOI:10.7666/d.y1065242.

[3] 方能胜.完美匹配层方法的稳定性分析[J]. 2009.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值