【主动噪声和振动控制算法】对较大的次级路径变化具有鲁棒性附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

主动噪声和振动控制(Active Noise and Vibration Control, ANVC)技术,通过产生与原始噪声或振动信号相位相反的控制信号,利用声波或振动的干涉效应来降低或消除目标区域的噪声或振动,在环境保护、工业降噪、设备减振等领域有着广泛的应用前景。而ANVC系统的核心在于其控制算法的设计,算法的性能直接决定了系统的控制效果。其中,一个至关重要的评价指标便是算法对次级路径变化的鲁棒性。本文将深入探讨主动噪声和振动控制算法应对较大次级路径变化的能力,分析其重要性,并讨论目前主流算法在应对此类变化时的表现及改进策略。

次级路径(Secondary Path)是指从控制源(通常是扬声器或振动器)到误差传感器之间的传递函数。在实际应用中,由于环境因素、温度变化、设备老化、传感器位置移动、负载变化等原因,次级路径不可避免地会发生变化。如果ANVC算法对这些变化不够鲁棒,会导致控制性能下降,甚至系统不稳定,最终丧失控制效果。因此,设计具有良好鲁棒性的ANVC算法至关重要,它直接关系到ANVC系统能否在复杂和动态的环境中稳定有效地工作。

传统的主动控制算法,例如最小均方(Least Mean Squares, LMS)算法及其变体,在次级路径相对稳定时可以获得良好的控制效果。然而,这些算法往往对次级路径的变化非常敏感。当次级路径发生显著变化时,LMS算法可能会出现收敛速度下降、稳态误差增大甚至发散等问题。这是因为LMS算法的收敛过程依赖于对次级路径的准确估计,而当次级路径发生变化时,算法使用的次级路径模型不再准确,导致控制信号与实际的干扰信号相位不一致,进而影响控制效果。

为了提高ANVC算法对次级路径变化的鲁棒性,研究者提出了许多有效的策略。这些策略大致可以分为以下几类:

1. 在线次级路径建模技术:

这一类方法旨在实时估计和更新次级路径模型,从而使控制算法始终基于当前准确的次级路径信息进行控制。常用的在线建模方法包括:

  • 基于辅助噪声的在线建模:

     通过在控制信号中叠加辅助噪声,并利用自适应滤波算法在线估计次级路径。例如,使用滤波x最小均方(Filtered-x LMS, FXLMS)算法的在线建模版本,将辅助噪声引入到FXLMS算法中,持续地估计和更新次级路径模型。这种方法可以在系统运行过程中不断学习次级路径的变化,从而提高鲁棒性。然而,辅助噪声的存在可能会对控制效果产生一定程度的影响,需要在控制性能和建模精度之间进行权衡。

  • 基于模型辨识的在线建模:

     利用系统辨识理论,建立次级路径的动态模型,并通过在线数据进行模型参数的估计和更新。例如,可以使用递归最小二乘(Recursive Least Squares, RLS)算法进行在线辨识。这种方法可以更准确地描述次级路径的动态特性,但在计算复杂度方面可能较高。

2. 鲁棒自适应滤波算法:

这一类方法侧重于改进自适应滤波算法本身,使其对次级路径变化具有更强的抵抗能力。

  • 基于变量步长的自适应滤波:

     传统的LMS算法使用固定的步长参数,当次级路径发生变化时,固定的步长可能无法适应新的情况。基于变量步长的自适应滤波算法可以根据误差信号的大小动态调整步长参数,从而提高算法的收敛速度和跟踪能力。例如,当误差信号较大时,增大步长以加快收敛速度;当误差信号较小时,减小步长以提高稳态精度。

  • 基于正则化的自适应滤波:

     通过在自适应滤波算法的目标函数中引入正则化项,可以限制滤波器权重的变化范围,从而提高算法的鲁棒性。例如,L1正则化可以鼓励滤波器权重的稀疏性,从而降低对次级路径变化的敏感性。

  • 基于多模型自适应滤波:

     利用多个并行的自适应滤波器,每个滤波器对应不同的次级路径模型。通过某种选择机制(例如,基于误差信号的加权平均),选择最合适的滤波器输出作为控制信号。这种方法可以在多种可能的次级路径变化情况下保持良好的控制性能。

3. 基于频率分解的控制策略:

这一类方法将噪声或振动信号分解成不同的频率成分,并针对不同的频率成分设计不同的控制策略。例如,可以采用滤波器组将信号分解成不同的频带,并对每个频带使用不同的自适应滤波算法或参数。这种方法可以更有效地利用有限的控制资源,提高控制系统的整体性能。

4. 前馈控制与反馈控制相结合:

在某些情况下,可以通过加入前馈控制环节来提高系统的鲁棒性。前馈控制环节利用已知的干扰信号的信息,直接产生控制信号,而不需要依赖误差信号的反馈。例如,如果可以提前知道负载的变化情况,可以通过前馈控制环节来补偿负载变化对次级路径的影响。

然而,以上各种策略也存在各自的局限性。例如,在线次级路径建模方法需要额外的计算资源,并且可能会引入辅助噪声;鲁棒自适应滤波算法可能会牺牲一定的控制性能;频率分解的控制策略需要仔细选择滤波器组的参数;前馈控制则依赖于对干扰信号的准确预测。因此,在实际应用中,需要根据具体的应用场景和需求,选择合适的策略或将其组合使用。

展望未来,随着机器学习和深度学习技术的快速发展,基于数据驱动的ANVC算法将成为一个重要的研究方向。例如,可以利用神经网络来学习次级路径的非线性特征,并建立更加准确的次级路径模型。此外,强化学习技术也可以用于优化ANVC系统的控制策略,使其能够更好地适应复杂的环境变化。

总而言之,主动噪声和振动控制算法对较大次级路径变化的鲁棒性是评价其性能的关键指标。针对这一问题,研究者提出了多种有效的策略,包括在线次级路径建模、鲁棒自适应滤波、基于频率分解的控制以及前馈控制与反馈控制相结合等方法。随着技术的不断发展,更加智能和鲁棒的ANVC算法将不断涌现,为解决噪声和振动污染问题提供更加有效的解决方案。未来的研究应更加关注以下几个方面:

  • 更加高效的在线次级路径建模方法:

     减少辅助噪声的影响,降低计算复杂度,提高建模精度。

  • 更加鲁棒的自适应滤波算法:

     在保持良好控制性能的前提下,提高对次级路径变化的抵抗能力。

  • 基于深度学习的ANVC算法:

     利用神经网络学习次级路径的非线性特征,优化控制策略。

  • 多传感器融合的ANVC系统:

     利用多个传感器的信息,提高对环境变化的感知能力,增强系统的鲁棒性。

⛳️ 运行结果

🔗 参考文献

[1] 段江浩.电动汽车动力传动系统噪声主动控制技术研究[D].吉林大学[2025-03-30].DOI:CNKI:CDMD:2.1018.218117.

[2] 姜荣俊,何琳,JIANGRong-jun,等.有源振动噪声控制技术在潜艇中的应用研究[J].噪声与振动控制, 2005, 25(2):6.DOI:10.3969/j.issn.1006-1355.2005.02.001.

[3] 赵扬,虞和济.评述主动噪声控制技术[J].噪声与振动控制, 1997(4):4.DOI:CNKI:SUN:ZSZK.0.1997-04-001.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值