✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着可再生能源的快速发展,光伏发电系统在能源结构中的地位日益凸显。然而,光伏系统在实际运行中不可避免地面临辐照度变化和局部遮光等复杂环境因素的影响,这严重挑战了传统最大功率点跟踪(Maximum Power Point Tracking, MPPT)技术的有效性。在均匀辐照条件下,光伏系统的功率-电压(P-V)曲线呈现单一峰值,传统MPPT算法能够相对容易地追踪到全局最大功率点(Global Maximum Power Point, GMPP)。但在局部遮光条件下,由于光伏组件电流失配导致旁路二极管导通,P-V曲线会出现多个局部最大功率点(Local Maximum Power Point, LMPP)和唯一的GMPP,这使得传统MPPT算法容易陷入LMPP,导致发电效率显著降低。本文针对均匀辐照和局部遮光这两种典型工况,提出了一种新型的基于样条函数的MPPT技术。该技术首先通过对光伏阵列的特性进行建模,然后利用样条插值方法对P-V曲线进行拟合,实现对功率曲线上潜在极值点的快速预测。接着,结合多种策略,在均匀辐照条件下快速收敛至单峰GMPP,在局部遮光条件下有效区分LMPP和GMPP,并通过优化搜索策略快速锁定GMPP。仿真和实验结果表明,所提出的新型样条-MPPT技术在各种辐照和遮光条件下均表现出优异的性能,不仅具有快速的响应速度和较高的追踪精度,而且能够有效地规避LMPP陷阱,显著提高了光伏系统的发电效率。
关键词:光伏系统;MPPT;局部遮光;全局最大功率点;样条插值;功率-电压曲线;可再生能源
引言
在全球能源危机和气候变化的双重压力下,清洁、可再生的能源技术受到了广泛关注。光伏发电作为一种重要的可再生能源形式,以其清洁无污染、资源丰富、维护成本低等优点,在全球范围内得到了快速发展。然而,光伏系统的发电效率受到环境因素的显著影响,其中辐照度变化和局部遮光是两个主要的挑战。
光伏系统的发电特性可以用其伏安(I-V)和功率-电压(P-V)曲线来描述。在理想的均匀辐照条件下,光伏组件的I-V曲线光滑且单调下降,P-V曲线则呈现一个单一的峰值,即全局最大功率点(GMPP)。此时,传统的MPPT算法,如扰动观察法(Perturb and Observe, P&O)、增量电导法(Incremental Conductance, InC)等,通过不断调整工作点电压或电流,能够有效地追踪到GMPP,从而最大化光伏系统的输出功率。
然而,在实际应用中,光伏系统经常面临局部遮光问题,例如建筑物阴影、树木遮挡、污垢堆积等。当光伏阵列中的部分组件被遮挡时,这些组件的输出电流会降低。为了避免电流失配造成的功耗和热斑效应,现代光伏组件通常集成旁路二极管。当被遮挡组件的电流低于未被遮挡组件的电流时,旁路二极管会导通,将电流旁路,从而形成多个不同的工作区域,使得光伏阵列的整体P-V曲线呈现出多个局部最大功率点(LMPP)和一个全局最大功率点(GMPP)的复杂多峰特性。在这种情况下,传统的MPPT算法往往容易陷入到功率较低的LMPP,无法追踪到真正的GMPP,导致光伏系统的发电功率显著降低。
为了解决局部遮光问题下的MPPT挑战,国内外学者提出了多种改进算法。这些算法主要可以分为以下几类:扫描法、基于智能算法的方法以及基于曲线拟合或模型预测的方法。扫描法通过在一定范围内扫描电压或电流,寻找功率最大值,但扫描范围的选择和步长会影响追踪速度和精度。基于智能算法的方法,如遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、模糊逻辑控制(Fuzzy Logic Control, FLC)等,具有较强的全局搜索能力,能够有效应对多峰P-V曲线。然而,这些智能算法通常计算量大,收敛速度慢,且参数调整较为复杂。基于曲线拟合或模型预测的方法,通过对光伏阵列的电气特性进行建模或对P-V曲线进行拟合,来预测GMPP的位置。这类方法能够减少搜索范围,提高追踪速度,但模型的准确性和拟合的精度直接影响算法的性能。
本文旨在提出一种新型的基于样条函数的MPPT技术,该技术能够有效地应对均匀辐照和局部遮光两种典型工况。通过利用样条插值对光伏阵列的P-V曲线进行拟合,该技术能够快速准确地预测P-V曲线上的潜在极值点,并结合优化搜索策略,在均匀辐照条件下实现快速收敛,在局部遮光条件下有效区分LMPP和GMPP,并快速追踪到GMPP。
二、 光伏阵列建模与局部遮光特性分析
为了深入研究光伏系统的MPPT问题,需要对其电气特性进行准确建模。
光伏阵列通常由多个光伏组件串联和并联组成。在均匀辐照条件下,所有组件的特性基本一致,整个阵列的P-V曲线呈现单峰特性。然而,在局部遮光条件下,由于部分组件的辐照度降低,其光电流IphIph减小,导致其输出电流下降。当被遮挡组件的电流低于未被遮挡组件的电流时,为了维持整个串联支路的电流平衡,旁路二极管将导通。
考虑一个包含多个串联组件的光伏支路,每个组件都并联一个旁路二极管。当其中一个组件被遮挡时,其输出电流减小,如果这个电流小于其他未被遮挡组件的电流,旁路二极管就会导通,使得电流绕过这个组件。此时,被遮挡组件两端的电压变为一个小的负值(二极管压降),而其他未被遮挡组件继续按照其正常的I-V特性工作。这种现象导致整个支路的I-V曲线出现多个台阶,进而使得P-V曲线呈现多峰特性。峰的数量与遮挡模式、串联组件数量以及旁路二极管的数量等因素有关。
在局部遮光条件下,LMPP和GMPP的出现使得MPPT算法必须具备识别并避开LMPP的能力。GMPP通常对应于光伏阵列能够输出的最大功率,而LMPP则对应于旁路二极管导通后形成的功率局部最大值。有效的MPPT算法需要能够快速且准确地找到GMPP的位置。
三、 新型样条-MPPT技术
本文提出的新型样条-MPPT技术结合了样条插值和优化的搜索策略,旨在解决均匀辐照和局部遮光条件下光伏系统的MPPT问题。该技术主要包括以下几个阶段:
3.1 数据采集与初始化
算法开始时,需要采集光伏阵列的当前工作点电压和功率。为了构建用于样条插值的P-V曲线数据,可以采取两种策略:
- 离散点扫描:
在一个预设的电压或电流范围内,以一定的步长采集一系列离散的工作点数据(电压和功率)。这种方法能够较全面地获取P-V曲线的信息,但扫描过程耗时较长。
- 历史数据利用:
利用系统历史工作点数据进行拟合,结合当前工作点数据进行更新。这种方法可以减少扫描时间,但依赖于历史数据的有效性。
在实际应用中,可以结合这两种策略,例如在系统启动或辐照度发生显著变化时进行离散点扫描,而在稳定运行期间利用历史数据进行快速更新。
3.2 P-V曲线的样条插值
采集到一系列离散的P-V数据点后,利用样条插值方法对P-V曲线进行拟合。样条插值是一种分段多项式插值方法,具有光滑性好、逼近精度高的特点。
3.3 极值点预测与识别
计算S(V)S(V)的导数dS(V)dVdVdS(V),并通过求解dS(V)dV=0dVdS(V)=0来找到潜在的极值点。由于样条函数是分段多项式,求解导数为零的点可以转化为求解一系列多项式方程的根。对于三次样条,导数是分段二次多项式,求解二次方程即可。
求解得到的一系列根可能对应于局部最大功率点、全局最大功率点或者局部最小功率点(在两个峰值之间)。需要对这些极值点进行识别。一个简单的识别方法是比较这些极值点处的功率值。功率值最大的点最有可能就是GMPP。
在多峰情况下,识别GMPP的关键在于区分LMPP和GMPP。根据光伏阵列的特性,GMPP通常位于整个电压范围的较高功率区域。而LMPP则可能分布在不同的电压区域。通过比较预测到的极值点处的功率,以及在这些极值点附近进行局部搜索,可以进一步确认GMPP的位置。
3.4 搜索与追踪策略
基于样条插值预测的极值点信息,算法可以采用不同的搜索和追踪策略:
- 均匀辐照条件下:
在均匀辐照条件下,P-V曲线是单峰的,样条插值预测到的极值点只有一个(或只有一个显著的极值点)。此时,可以直接将该预测点作为目标,并采用传统的MPPT算法(如P&O或InC)在其附近进行快速微调,以达到真正的GMPP。由于已经预测了GMPP的大致位置,搜索范围可以大大缩小,从而加快收敛速度。
- 局部遮光条件下:
在局部遮光条件下,P-V曲线可能存在多个LMPP和GMPP。通过样条插值,可以预测到多个潜在的极值点。算法首先比较这些预测点的功率值,选择功率最大的点作为初步的GMPP候选点。然后,可以在这个候选点附近进行局部搜索,以确认其是否为真正的GMPP。同时,为了避免遗漏可能存在的更高功率的GMPP,可以结合全局搜索策略。一种有效的方法是在多个预测到的极值点附近进行局部搜索,并比较所获得的功率值,最终选择功率最高的点作为当前的GMPP。
为了提高算法的鲁棒性,可以设置一个判断条件来区分均匀辐照和局部遮光。例如,通过计算P-V曲线的平滑程度或者预测到的极值点的数量来判断。如果在一定电压范围内预测到多个显著的极值点,则认为处于局部遮光状态。
3.5 动态调整与鲁棒性
实际运行中,辐照度和遮光模式可能会发生变化。所提出的MPPT技术需要具备动态调整能力。当检测到辐照度或遮光模式发生显著变化时,需要重新进行数据采集、样条插值和极值点预测,并调整搜索策略。
此外,为了提高算法的鲁棒性,可以加入一些容错机制。例如,如果预测到的极值点位置在短时间内变化剧烈,可能表明数据采集或拟合存在误差,此时可以增加数据采集点或调整样条插值参数。
四、 结论
本文针对均匀辐照度和局部遮光条件下光伏系统的MPPT问题,提出了一种新型的基于样条函数的MPPT技术。该技术通过样条插值对P-V曲线进行拟合,实现了对功率曲线上潜在极值点的快速预测,并结合优化的搜索策略,在不同工况下均表现出优异的性能。
在均匀辐照条件下,该技术能够快速收敛至单峰GMPP,提高追踪速度和精度。在局部遮光条件下,该技术能够有效识别多峰特性,区分LMPP和GMPP,并成功追踪到GMPP,显著提高了光伏系统的发电效率。仿真和实验结果充分验证了所提出技术的有效性和优越性。
未来可以进一步研究如何优化数据采集策略,减少数据采集时间;如何选择合适的样条类型和插值参数,提高拟合精度;以及如何结合其他智能算法或优化方法,进一步提高算法的鲁棒性和抗干扰能力。此外,将该技术应用于实际大规模光伏电站,并考虑分布式MPPT控制下的样条-MPPT实现,也将是重要的研究方向。
⛳️ 运行结果
🔗 参考文献
[1] 樊立萍,姚凌颖.遮光条件下基于IPSO-FLC的光伏MPPT控制[J].现代电子技术, 2024, 47(22):77-82.DOI:10.16652/j.issn.1004-373x.2024.22.013.
[2] 龚湟杰.微分平坦控制和P&O结合的光伏发电最大功率追踪[J].西南交通大学, 2016.
[3] 樊立萍,姚凌颖.基于混合改进自适应粒子群算法的光伏MPPT控制[J].重庆理工大学学报(自然科学), 2024, 38(10):261-266.DOI:10.3969/j.issn.1674-8425(z).2024.10.032.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇