✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
色谱分析作为一种广泛应用于化学、生物、制药等领域的分离和检测技术,其输出的色谱图包含了丰富的样品信息。然而,实际获得的色谱图往往受到各种因素的影响,例如进样器残留、柱流失、检测器漂移以及环境噪声等,导致色谱图基线不平坦且伴有噪声。这些不理想的基线和噪声严重干扰了峰的识别、积分和定量分析的准确性,是色谱数据处理中亟待解决的关键问题。传统的基线校正方法,如移动平均、多项式拟合等,在面对复杂基线或尖锐噪声时往往效果不佳,甚至可能引入新的失真。近年来,基于稀疏性原理的方法在信号处理领域展现出强大的能力,为色谱图的基线估计和去噪提供了新的思路。特别是将色谱图基线视为一个在特定变换域下具有稀疏结构的信号,或通过引入稀疏基元(如微球)来逼近基线,为色谱图的基线估计和去噪提供了有效的框架。
色谱图基线的特性与挑战
理解色谱图基线的特性对于有效进行基线估计至关重要。典型的色谱图基线具有以下几个主要特征:
- 低频变化:
基线通常呈现缓慢变化的趋势,反映了长时间尺度的仪器漂移或柱流失等效应。
- 局部不规则性:
在某些区域,基线可能出现局部隆起或下降,这可能是由于溶剂峰的拖尾或微量污染物的影响。
- 噪声叠加:
高频的随机噪声叠加在基线上,使得基线的真实形态难以直接观察。
- 与峰的交叠:
重要的分析峰通常叠加在基线上,且有时峰宽较窄,与基线局部变化或噪声频谱存在一定程度的重叠,这增加了将峰与基线分离的难度。
传统方法在处理这些特性时面临诸多挑战。例如,移动平均虽然能一定程度上平滑基线,但容易模糊窄峰或改变峰形;多项式拟合适用于缓慢变化的基线,但难以处理复杂的局部波动;基于阈值的方法容易受到噪声的影响,且难以区分低浓度峰与基线波动。因此,需要更先进的方法来准确地估计和去除基线及噪声,从而获得干净、平坦的色谱图,为后续的峰检测和定量分析提供可靠的基础。
基于稀疏性的色谱图基线估计原理
稀疏性原理的核心思想是:一个复杂信号可以在某个特定的变换域或通过线性组合一组基元(原子)来实现简洁的表示,即在这个表示中只有少数非零系数。将这一思想应用于色谱图基线估计,主要有两种途径:
-
基线在特定变换域下的稀疏性: 许多自然信号(包括基线)在小波变换、傅里叶变换等特定变换域下具有稀疏性。例如,基线的缓慢变化特性使其在小波域的低频系数占主导地位,高频系数相对稀疏。基于此,可以通过对色谱图进行变换,然后在变换域中对基线和峰进行区分,再通过逆变换重构出基线。
-
基线由稀疏基元(原子)组合构成: 另一种更直观的理解是将基线视为由一系列简单的、稀疏的基元(如不同宽度和高度的微球、高斯函数等)线性叠加而成。这些基元通常用来模拟基线的局部变化或广阔的背景信号。通过寻找最少的基元组合来逼近原始色谱图的基线部分,从而实现基线估计。
在色谱图背景下,“稀疏性”可以体现在多个层面:
- 基线自身的稀疏表示:
在合适的变换域下,描述基线形状的系数是稀疏的。
- 用来构建基线的基元的稀疏组合:
通过选择少量合适的基元来逼近基线,这种组合本身是稀疏的。
- 峰与基线的稀疏差异:
色谱峰通常是尖锐的,在某个基元库中可能可以用少数原子(如高斯函数、洛伦兹函数等)来表示,而基线是缓慢变化的,可以用另一类原子来表示。通过对整个色谱图进行稀疏分解,可以将代表峰和基线的原子分离。
微球模型在基线估计中的应用
“微球”(或称为“形态学操作”中的“开运算”)是一种基于形态学图像处理概念的信号处理方法,其核心思想是利用一个结构元素(在这里可以理解为一个“微球”)在信号上进行滑动操作,从而提取信号的特定形态特征。在色谱图基线估计中,将微球作为稀疏基元来逼近基线是一种有效的方法。
具体而言,微球可以被看作是一个固定大小和形状的结构元素。在色谱图信号上进行“开运算”(即先腐蚀后膨胀)可以有效地去除窄峰,保留信号的低频成分和宽泛的背景。开运算的过程可以理解为用微球在信号底部滚动,所形成的轨迹就是基线的估计。通过调整微球的大小,可以提取不同尺度的基线信息。
将微球模型应用于稀疏基线估计,可以构建一个基元库,其中包含不同大小和形状的微球。基线则被视为这些微球的稀疏线性组合。基线估计问题转化为寻找一组系数,使得通过这些系数加权的微球之和能够最好地逼近原始色谱图的基线部分,同时使得非零系数的数量最少(即稀疏)。
通过求解上述优化问题,可以得到稀疏系数向量 ww,进而通过 Dw 重构出基线信号。这种方法能够有效地将尖锐的色谱峰从缓慢变化的基线中分离出来,因为微球基元更适合描述基线的形状而非尖锐的峰。
基于稀疏性的色谱图去噪
基于稀疏性的去噪方法可以应用于整个色谱图,或者在去除基线后对剩余的峰信号和噪声进行处理。
将去噪问题同样转化为稀疏表示问题。
假设干净信号 xx 在某个变换域(如小波域)下具有稀疏性,而噪声 nn 是高斯白噪声,通常在变换域下不具有稀疏性。
或者,如果将去噪和基线估计结合,可以构建一个更复杂的模型。例如,假设原始色谱图可以分解为基线 bb、峰信号 pp 和噪声 nn,即 y=b+p+ny=b+p+n。基线 bb 可以用微球基元稀疏表示,而峰信号 pp 也可以用另一组原子(如高斯函数)稀疏表示。噪声 nn 则被视为残差。
其中 DbDb 是微球基元字典,DpDp 是峰信号基元字典,wbwb 和 wpwp 分别是对应的稀疏系数向量。
通过求解这类稀疏优化问题,可以同时实现基线估计和去噪。稀疏性约束使得模型倾向于用最少的原子来表示信号,从而将具有稀疏结构的基线和峰从非稀疏的噪声中分离出来。噪声则被视为不符合稀疏表示的残差被去除。
方法实现与优化
实现基于稀疏性的色谱图基线估计与去噪通常需要以下几个步骤:
-
构建字典: 根据信号特性选择合适的基元来构建字典。对于基线,可以使用不同大小和形状的微球作为基元;对于峰,可以使用高斯函数、洛伦兹函数等作为基元。字典的构建是稀疏表示方法的关键步骤,字典的优劣直接影响到分解和重构的效果。可以采用固定字典或自适应字典学习的方法。
-
选择优化算法: 求解稀疏优化问题需要选择合适的算法。常用的算法包括:
- 贪婪算法:
如匹配追踪 (Matching Pursuit, MP) 和正交匹配追踪 (Orthogonal Matching Pursuit, OMP)。这些算法迭代地选择与残差最匹配的原子。
- 凸松弛算法:
如基追踪 (Basis Pursuit, BP) 和 Lasso。这些算法将非凸的 L0L0 范数松弛为凸的 L1L1 范数,可以通过迭代收缩阈值算法 (Iterative Shrinkage-Thresholding Algorithm, ISTA) 或快速 ISTA (Fast ISTA, FISTA) 等求解。
- 贪婪算法:
-
参数选择: 基于稀疏性的方法通常需要选择一些参数,例如正则化参数 λλ 或残差阈值 ϵϵ。这些参数的选择会影响基线估计和去噪的效果。可以通过交叉验证、L-曲线方法或基于先验知识进行选择。
-
迭代优化: 有些方法可能需要迭代进行基线估计和峰信号提取,直到达到收敛条件。
优点与局限性
基于稀疏性(微球)的色谱图基线估计与去噪方法相较于传统方法具有以下优点:
- 更高的准确性:
能够更准确地分离基线和峰信号,尤其适用于复杂基线或低浓度峰。
- 更好的去噪效果:
能够有效去除噪声,提高信噪比,为后续分析提供更干净的数据。
- 灵活性:
通过构建不同的字典,可以适应不同类型的色谱图和基线形态。
- 理论基础坚实:
基于稀疏表示理论,具有较好的数学基础。
然而,该方法也存在一些局限性:
- 计算复杂度:
求解稀疏优化问题通常需要较大的计算量,尤其是对于大型数据集。
- 字典构建的挑战:
构建一个合适的字典来有效地表示基线和峰信号需要经验和专业知识。
- 参数选择的敏感性:
参数的选择对结果影响较大,需要仔细调整。
- 对于某些特殊基线或峰的挑战:
对于非常复杂的基线或与基线形态非常相似的峰,分离仍然具有挑战性。
结论
基于稀疏性原理,特别是利用微球作为基元进行色谱图基线估计和去噪,为解决色谱数据处理中的关键问题提供了强有力的新工具。通过将基线和峰信号表示为在特定字典下的稀疏组合,该方法能够有效地将它们从噪声中分离,获得更准确、更干净的色谱图。虽然在计算效率和参数选择方面仍需进一步优化,但随着稀疏表示理论和优化算法的不断发展,基于稀疏性的色谱图基线估计与去噪方法有望在色谱数据处理领域发挥越来越重要的作用,显著提升色谱分析的准确性和可靠性。未来的研究方向可以包括自适应字典学习、更高效的优化算法以及将稀疏性与其他信号处理技术相结合,以进一步提升方法的性能。
⛳️ 运行结果
🔗 参考文献
[1] 于思明.分子印迹聚合物微球的制备及其性能研究[D].齐齐哈尔大学,2012.
[2] 苏立强,于思明,宁振鑫.种子溶胀悬浮聚合法制备香草醛分子印迹聚合物微球[J].化学通报, 2012, 75(2):4.DOI:CNKI:SUN:HXTB.0.2012-02-012.
[3] 欧阳康龙,孙彦璞,龚波林.新型聚合物单分散温敏色谱固定相的制备及其在生物大分子分离中的应用[J].分析化学, 2010, 38(6):4.DOI:CNKI:SUN:FXHX.0.2010-06-025.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇