✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代电力系统规划与运行中,负荷预测的准确性对系统的经济性、可靠性和安全性具有决定性影响。然而,负荷本身固有的不确定性,如天气变化、经济波动、突发事件以及用户行为的随机性等,使得精确预测成为一项严峻挑战。传统的确定性负荷预测方法往往难以充分捕捉这些不确定性,导致系统在极端情况下的脆弱性。因此,如何有效地模拟和处理负荷不确定性,成为电力系统研究领域的热点与难点。本文将深入探讨一种先进的负荷不确定性模拟方法——拉丁超立方抽样(Latin Hypercube Sampling, LHS),并进一步研究其在生成初始场景后如何通过场景缩减技术,在保持负荷不确定性特征的同时,降低计算复杂度,为电力系统规划与运行提供更可靠的决策支持。
一、 负荷不确定性建模的挑战与必要性
负荷不确定性贯穿于电力系统从长期规划到短期运行的各个环节。在长期规划中,负荷预测的不确定性影响电源投资、电网建设的规模与时机;在短期运行中,负荷预测偏差可能导致发电机组启停安排、调峰调频策略、电网潮流控制的失误,甚至引发电网堵塞或系统崩溃。传统的确定性优化方法往往基于单一的负荷预测值进行决策,这种“一点式”预测忽视了负荷波动的可能性,可能导致过度保守或过于激进的决策。
为了应对这一挑战,引入不确定性建模成为必然。不确定性建模的本质是捕捉负荷的随机波动特性,并将其量化。常见的不确定性建模方法包括概率分布建模(如正态分布、韦布尔分布等)、模糊集理论、区间分析以及随机过程(如马尔可夫链)等。然而,单一的概率分布往往难以全面刻画负荷在不同时间尺度和多种因素耦合下的复杂随机性。此外,负荷在时间序列上的相关性以及不同区域负荷之间的空间相关性,也为不确定性建模带来了额外的复杂性。
在诸多不确定性建模方法中,基于蒙特卡洛抽样的场景生成方法因其直观性、灵活性和对多种分布的适应性而受到广泛关注。通过生成大量的负荷场景,可以模拟负荷的各种可能状态,从而在决策过程中考虑极端情况和潜在风险。然而,纯粹的蒙特卡洛抽样需要大量的样本才能达到足够的精度,这会带来巨大的计算负担,尤其是在高维问题中(例如,考虑多个时段、多个区域的负荷不确定性)。因此,如何高效且准确地生成具有代表性的负荷场景,成为场景分析方法的关键。
二、 拉丁超立方抽样(LHS)在负荷不确定性模拟中的应用
拉丁超立方抽样(LHS)是一种分层抽样技术,旨在比单纯的蒙特卡洛抽样更有效地探索输入变量的整个取值空间。其核心思想是将每个输入变量的概率分布函数(CDF)划分为等概率的子区间,然后从每个子区间中随机抽取一个样本点。通过这种方式,可以确保每个输入变量的整个取值范围都被均匀覆盖,从而在相同样本量下,LHS能够提供比蒙特卡洛抽样更具代表性的样本集。
LHS生成负荷场景的步骤如下:
-
确定不确定性变量及边缘分布: 识别影响负荷的主要不确定性因素,如温度、湿度、风速、经济指标等,或者直接将负荷本身视为不确定性变量。对于每个不确定性变量,需要基于历史数据或专家经验确定其概率分布函数(CDF),例如正态分布、对数正态分布、极值分布等。在实际应用中,往往采用非参数估计方法,如核密度估计(KDE)来拟合负荷的边缘分布,以避免对特定分布形式的假设。
-
考虑变量间的相关性: 负荷不确定性变量之间往往存在复杂的依赖关系。例如,温度与负荷之间通常呈正相关,而风速可能与风电出力相关,从而间接影响净负荷。LHS本身是独立抽样,无法直接处理变量间的相关性。为了引入相关性,通常采用以下方法:
- 秩相关(Rank Correlation):
通过构建秩相关矩阵(如斯皮尔曼秩相关系数),将原始不相关LHS样本映射到具有指定相关性的样本空间。
- Copula函数:
Copula函数是一种强大的工具,可以将多个随机变量的联合分布分解为其边缘分布和连接函数(Copula)的乘积。通过选择合适的Copula函数(如高斯Copula、t-Copula),可以在保留边缘分布特性的前提下,精确地建模变量间的非线性相关结构。
- 基于聚类的相关性分析:
对于复杂的非线性相关性,可以先对历史负荷数据进行聚类分析,识别出不同模式下的负荷行为,然后在每个聚类内进行LHS抽样,以捕捉不同模式下的相关性。
- 秩相关(Rank Correlation):
-
生成拉丁超立方样本矩阵: 对于每个不确定性变量,将其累积分布函数(CDF)划分为N个等概率的子区间。从每个子区间随机抽取一个样本点,构成该变量的N个样本值。然后,将这些样本值随机排列组合,形成N个包含所有不确定性变量的场景。这个过程确保了每个变量的样本值在整个取值范围内都得到了均匀覆盖,并且所有变量的组合都具有一定的代表性。
LHS在负荷场景生成中的优势在于:
- 高效性:
相较于纯蒙特卡洛抽样,LHS在较小的样本量下就能更好地覆盖样本空间,从而显著提高收敛速度和模拟效率。这对于电力系统复杂的优化问题而言,具有重要的实践意义。
- 代表性:
LHS确保了每个输入变量的整个概率分布范围都被均匀探索,减少了样本偏差,使得生成的场景能够更全面地反映负荷的随机性。
- 灵活性:
LHS可以应用于任何形式的边缘分布,且易于结合Copula函数等工具来建模变量间的相关性。
三、 缩减场景:在精度与计算效率间取得平衡
通过LHS生成初始负荷场景后,通常会得到大量的场景(例如数百到数千个)。尽管LHS提高了效率,但如此庞大的场景数量对于电力系统的优化问题(如机组组合、经济调度、电网扩展规划)来说,仍然可能带来巨大的计算负担,甚至使问题难以求解。因此,有必要对生成的初始场景进行缩减,在保留负荷不确定性主要特征的同时,大幅降低场景数量,以平衡模拟精度与计算效率。
场景缩减的本质是寻找一个具有代表性的、更小规模的场景子集,使得这个子集能够近似地捕捉原始场景集的统计特性和决策相关的风险。常见的场景缩减方法包括:
-
聚类分析(Clustering Analysis):
- 原理:
将相似的负荷场景归为一类,然后用每个类的中心(质心)或代表点来代替该类中的所有场景。聚类算法包括K-means、层次聚类、DBSCAN等。
- 实施:
对于LHS生成的每个场景,可以将其视为多维空间中的一个点。通过计算场景之间的距离(如欧氏距离、马氏距离),将距离相近的场景聚为一类。然后,可以取每个簇的质心作为缩减后的场景,并赋予其对应的概率(该簇中所有原始场景概率之和)。
- 优点:
直观易懂,计算复杂度相对较低,能有效降低场景数量。
- 缺点:
聚类结果可能受初始质心选择和距离度量方式的影响;对于复杂的负荷模式,可能难以有效捕捉。
- 原理:
-
同步回溯(Synchronous Backwards Reduction, SBR)/Kantorovich距离法:
- 原理:
SBR是一种基于Wasserstein距离(也称为Kantorovich距离)的场景缩减方法。它通过迭代地删除对Wasserstein距离影响最小的场景,直至达到目标场景数量。Wasserstein距离可以度量两个概率分布之间的“距离”,更适合衡量不同场景集之间的差异。
- 实施:
SBR算法通常从一个大的场景集开始,每次迭代选择并移除一对“最相似”的场景中的一个(通常是其中概率较小的那个),然后将该场景的概率加到另一场景上。这个过程不断重复,直到达到预设的场景数量。
- 优点:
能够更好地保留原始场景集的概率分布信息,对离群点不敏感,缩减效果通常优于简单的聚类方法。
- 缺点:
计算复杂度相对较高,尤其是在场景数量较多时。
- 原理:
-
启发式和元启发式算法:
- 原理:
利用遗传算法、粒子群优化、模拟退火等元启发式算法,以某种目标函数(如最小化缩减前后决策变量的偏差、最小化信息损失等)为导向,搜索最优的场景子集。
- 实施:
将场景缩减问题建模为一个优化问题,通过设计合适的编码方式、适应度函数和搜索策略,来寻找最具代表性的场景集合。
- 优点:
能够处理复杂的非线性关系和多目标优化问题,潜力大。
- 缺点:
算法设计复杂,可能需要大量参数调优,且不一定能保证全局最优。
- 原理:
-
基于信息熵的场景缩减:
- 原理:
信息熵可以衡量随机变量的不确定性。通过最小化缩减前后场景集的信息熵损失,来选择最具信息量的场景。
- 实施:
通常结合聚类或其他方法,在每个聚类中选择信息熵最大的场景作为代表,或者通过迭代选择贡献最大信息增益的场景。
- 优点:
能够从信息论的角度保证缩减后场景集的代表性。
- 缺点:
信息的定义和量化可能较为复杂。
- 原理:
场景缩减后的评估:
缩减后的场景集需要进行评估,以验证其是否能有效地代表原始场景集的不确定性特征。常用的评估指标包括:
- 统计特征比较:
比较缩减前后场景集的均值、方差、偏度、峰度等统计特征是否保持一致。
- 概率分布拟合度:
比较缩减前后场景的累积分布函数(CDF)或概率密度函数(PDF)的相似度。
- 决策结果对比:
将缩减后的场景代入实际的电力系统优化模型中进行求解,并与使用原始场景集或更多场景时的决策结果进行比较,判断缩减对决策的影响程度。例如,比较总成本、弃风弃光量、负荷削减量等。
四、 研究展望与总结
本文详细探讨了基于拉丁超立方抽样生成负荷不确定性场景的方法,并进一步阐述了多种场景缩减技术。LHS作为一种高效的抽样方法,能够在较小的样本量下生成具有代表性的负荷场景,为后续的电力系统分析提供了坚实基础。而场景缩减技术则在此基础上,通过精巧的算法,在保证不确定性特征的前提下,大幅降低了计算负担,使得复杂的电力系统优化问题在实际应用中更具可行性。
未来的研究可以从以下几个方面深入:
- 高维负荷不确定性建模:
随着智能电网的发展,负荷不确定性不仅仅局限于功率,还可能包括可控负荷的响应时间、分布式电源的出力波动等。如何将LHS与更复杂的随机过程模型(如基于Copula的随机微分方程)结合,以有效模拟高维且具有时空相关性的负荷不确定性,是一个重要的研究方向。
- 自适应场景生成与缩减:
传统的LHS和场景缩减通常是离线进行的。未来的研究可以探索开发自适应的场景生成与缩减方法,即在系统运行过程中,根据实时数据动态调整场景集,以更好地反映当前的负荷不确定性状态。
- 多目标场景缩减:
场景缩减不仅要考虑概率分布的相似性,可能还需要兼顾对系统韧性、经济性、环保性等多个目标的影响。开发考虑多目标优化准则的场景缩减算法,将是未来研究的趋势。
- 不确定性量化与可视化:
深入研究如何更好地量化和可视化负荷不确定性及其对系统决策的影响。例如,利用条件风险值(CVaR)、在险价值(VaR)等风险度量指标,结合交互式可视化工具,帮助决策者更直观地理解和应对不确定性。
- 与深度学习的结合:
探索将深度学习(如生成对抗网络GAN、变分自编码器VAE)与LHS和场景缩减结合,利用深度学习强大的模式识别和生成能力,生成更真实的负荷场景,并可能实现更高效的场景缩减。
⛳️ 运行结果
🔗 参考文献
[1] 孟安波,林艺城,殷豪.计及不确定性因素的家庭并网风-光-蓄协同经济调度优化方法[J].电网技术, 2018, 42(1):8.DOI:CNKI:SUN:DWJS.0.2018-01-021.
[2] 杨帆,王维庆,何山,等.基于多场景运行模拟的风-储-车容量随机规划[J].高电压技术, 2023, 49(3):1161-1171.
[3] 谢伟,唐卓.考虑源荷不确定性和碳交易的虚拟电厂经济调度[J].机电信息, 2024(6):6-9.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇