Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
————————————————————尴尬的分割线————————————————————
思路:简单DP。因为是连续的,所以只要和还是非负的,就可以一直加下去。一旦和变成负值,那么将起点和终点置为该点,和也变成该点。然后维护最优解,维护最大的和及其对应的起点终点即可。
代码如下:
/****************************************/
#include <stdio.h>
/****************************************/
const int IMP = -999999999;
int main() {
int cas, n;
scanf("%d", &cas);
for(int k = 1; k <= cas; k++) {
int sum = 0, best = IMP, s = 1, e = 1, ans_s, ans_e;
int a;
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a);
if(sum >= 0) {
sum += a;
e = i;
} else {
s = e = i;
sum = a;
}
if(best < sum) {
best = sum;
ans_s = s;
ans_e = e;
}
}
if(k != 1)
putchar('\n');
printf("Case %d:\n", k);
printf("%d %d %d\n", best, ans_s, ans_e);
}
return 0;
}