一、题目描述
你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。
例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。
示例一:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例二:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
二、解题思路
本题可以简化为:课程安排图是否为有向无环图。课程间有前置条件,但不能构成任何环路。该题的解题思路是利用拓扑排序。(ps:拓扑排序:AOV网,即顶点活动网构造拓扑序列的过程即为拓扑排序。)
步骤:
1.找一个入度为零(不需其他关卡通关就能解锁的)的端点,如果有多个,则从编号小的开始找;
2.将该端点的编号输出;
3.将该端点删除,同时将所有由该点出发的有向边删除;
4.循环进行 2 和 3 ,直到图中的图中所有点的入度都为零;
5.拓扑排序结束;
三、代码实现
class Solution {
//利用拓扑排序思路解题(经典拓扑排序)
public boolean canFinish(int numCourses, int[][] prerequisites) {
//(1)定义存储入度为0的顶点的序列(每个节点的入度利用inDegree[]数组存储)
int[] inDegree = new int[numCourses];
//(2)维护一个每个节点的邻接表(以prerequisites[i][1]为下标,每个下标对应一个数组,保存与其邻接的所有值)
List<List<Integer>> adjvex = new ArrayList<>();
for (int i = 0; i < numCourses; i++) {
adjvex.add(new ArrayList<>());
}
//(3)创建邻接表
int index=0;
for (int i = 0; i < prerequisites.length; i++) {
index=prerequisites[i][0];
inDegree[index]++;
adjvex.get(prerequisites[i][1]).add(prerequisites[i][0]);
}
//(4)定义存放入度为0的队列
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if(inDegree[i]==0){
queue.offer(i);
}
}
while (!queue.isEmpty()){
int pre=queue.poll();
numCourses--;
//这比for循环方便很多
for (int i:adjvex.get(pre)) {
if(--inDegree[i]==0){
queue.offer(i);
}
}
}
return numCourses==0;
}
}
拓扑排序问题:多个活动发生有先后顺序,b事件发生前a事件必须先发生(如通关游戏)