# OpenCL编程:图像卷积

卷积是对每个像素都进行相同的处理。以前我们是用ＣＰＵ来串行处理。现在我们可以利用ＯＰＥＮＣＬ进行并行处理（多核ＣＰＵ和ＧＰＵ）。

low.cl源码
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 __kernel void  low(__global int* A,                     __global int* B,                     __global int* C,                     int  sum,                     int  img_width,                     int  kernel_width) {     //获取索引号，这里是二维的，所以可以取两个     //否则另一个永远是0     int  col = get_global_id(0);     int  row = get_global_id(1);         int  stx = (kernel_width - kernel_width%2)/2;     int  sty = stx;         int  nx,ny;     int  totalR=0;     int  totalG=0;     int  totalB=0;     int  nid = 0;       totalR=0;totalG=0;totalB=0;     nid=0;     if(col<=2 || row<=2 || col>=img_width-2 || row>=img_width-2)   {      B[row*img_width*3+col*3+0] = 0;      B[row*img_width*3+col*3+1] = 0;      B[row*img_width*3+col*3+2] = 0;      return;    }      for(ny=row-sty;ny<=row+sty;ny++)     {         for(nx=col-stx;nx<=col+stx;nx++)         {             totalR += C[nid] * A[ny*img_width*3+nx*3+0];             totalG += C[nid] * A[ny*img_width*3+nx*3+1];             totalB += C[nid] * A[ny*img_width*3+nx*3+2];                  nid++;         }     }         B[row*img_width*3+col*3+0] = min(255,totalR/sum);     B[row*img_width*3+col*3+1] = min(255,totalG/sum);     B[row*img_width*3+col*3+2] = min(255,totalB/sum); }

main.cpp源码
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 #include  #include  #include  #include  #include  #include //数学库 #include //包含CL的头文件 //调用freeimage #include     using  namespace  std;    //8x8数组 const  int  dim_x = 256; const  int  dim_y = 256; const  int  kernel_x =5; const  int  kernel_y =5;    static  int  buf_A[dim_x*dim_y*3]; static  int  buf_B[dim_x*dim_y*3]; static  int  buf_C[] = {     1,1,1,1,1,     1,4,4,4,1,     1,4,12,4,1,     1,4,4,4,1,     1,1,1,1,1 };    //加载图片 //以RGBA格式存储图片 static  bool  LoadImg(const  char* fname) {     //初始化FreeImage     FreeImage_Initialise(TRUE);        //定义图片格式为未知     FREE_IMAGE_FORMAT fif = FIF_UNKNOWN;        //获取图片格式     fif = FreeImage_GetFileType(fname,0);        //根据获取格式读取图片数据     FIBITMAP* bitmap = FreeImage_Load(fif,fname,0);        if(!bitmap)     {         printf("load error! ");         return  false;     }        int  x,y;     RGBQUAD m_rgb;        //获取图片长宽     int  width = (int)FreeImage_GetWidth(bitmap);     int  height = (int)FreeImage_GetHeight(bitmap);        //获取图片数据     //按RGBA格式保存到数组中     for`(y=0;y

http://www.cmnsoft.com/article.php?id=39

• 评论

• 上一篇
• 下一篇