有序回归学习笔记

有序回归模型用于处理具有顺序关系的分类问题,如时间预测。传统的分类方法无法体现类别间的顺序,导致预测错误时损失相同。通过将标签编码为连续数值,有序回归能更好地反映预测误差的大小,从而提供更合理的损失评估。文章介绍了有序回归的概念,并通过实例说明了其相对于普通分类的优势。
摘要由CSDN通过智能技术生成

以下内容转自:

有序回归(ordinal regression)_音程的博客-CSDN博客_ordinal regression

假如有如下训练数据:

(x1,明天),(x2,后天),(x3,大后天)。

其中第一项x表示一个事件,第二项表示该事件发生的时间。
现在需要你训练一个模型,能够给定事件x作为输入,输出其发生的时间。

乍一看是一个分类(classification)问题。

但是如果采用普通的分类方法,由于以上标签会被one-hot编码成:

(x1,(1,0,0)),(x2,(0,1,0)),(x3,(0,0,1))。

所以分类的时候,当预测错了类别的时候,损失是一样的。因为one-hot编码中类别之间距离是一样的。

即给定x,如果模型预测的结果是明天。我们会发现真实标签是后天或者大后天都是一样的损失。这不合理,因为我们观察到这些标签有顺序关系,预测结果是明天时,真实标签是大后天应该比后天带来更大的损失才对,因为更加遥远,更加错误。

解决办法:有序回归。

为了突显有序可以将以上数据编码成

(x1,0),(x2,1),(x3,2)。
————————————————
版权声明:本文为CSDN博主「音程」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_43391414/article/details/113034297

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值