有序回归(ordinal regression)

这篇博客探讨了在时间序列预测问题中,传统分类方法的局限性,特别是当标签具有顺序关系时。通过举例说明,作者指出使用one-hot编码会导致预测错误时损失相同,而忽略了标签间的顺序信息。为了解决这个问题,提出了有序回归的解决方案,通过编码标签为连续数值,使得预测误差更远的标签会产生更大的损失。这种方法更好地捕捉了时间序列标签的顺序特性,提高了预测的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假如有如下训练数据:

(x1,明天),(x2,后天),(x3,大后天)。

其中第一项x表示一个事件,第二项表示该事件发生的时间。
现在需要你训练一个模型,能够给定事件x作为输入,输出其发生的时间。

乍一看是一个分类(classification)问题。

但是如果采用普通的分类方法,由于以上标签会被one-hot编码成:

(x1,(1,0,0)),(x2,(0,1,0)),(x3,(0,0,1))。

所以分类的时候,当预测错了类别的时候,损失是一样的。因为one-hot编码中类别之间距离是一样的。

即给定x,如果模型预测的结果是明天。我们会发现真实标签是后天或者大后天都是一样的损失。这不合理,因为我们观察到这些标签有顺序关系,预测结果是明天时,真实标签是大后天应该比后天带来更大的损失才对,因为更加遥远,更加错误。


解决办法:有序回归

为了突显有序可以将以上数据编码成

(x1,0),(x2,1),(x3,2)。

支持向量机学习用于有序回归,是一种机器学习方法,用于处理具有有序标签值的分类问题。有序回归问题在许多实际应用中都非常常见,例如对产品评价的情感分析、用户满意度预测等。 支持向量机(Support Vector Machine,SVM)是一种二分类模型,其目标是找到一个超平面,将不同类别的样本分开,并且使得分隔间隔最大。在支持向量机学习中,核心思想是将高维特征空间映射到一个更低维的特征空间,从而将复杂的非线性问题转化为线性可分的问题。 在有序回归任务中,支持向量机学习的目标是通过训练数据集找到一个有序的分类函数,将输入样本映射到有序标签值上。为了解决有序回归问题,可以使用一种称为“比较类别”的方法,即将问题转化为将输入样本与一组比较类别进行比较的问题。 支持向量机学习在有序回归中的应用具有一些优势。首先,支持向量机可以通过引入核函数来处理非线性关系,提高对于复杂数据的建模能力。其次,支持向量机具有良好的推广能力,可以在训练数据集之外进行准确的预测。此外,支持向量机可以通过调整超参数来灵活地适应不同的任务和数据集。 总之,支持向量机学习是一种有效的方法,可以用于解决有序回归问题。它可以通过映射特征空间和引入核函数来处理非线性关系,并且具有良好的推广能力和灵活的参数调整能力。在实际应用中,我们可以基于支持向量机学习方法来开发有效的有序回归模型,提取有序标签值与输入样本之间的关系,实现准确的预测和分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值