grounded_sam2 使用踩坑笔记

目录

自己封装的批量检测图片

封装的视频版推理代码:


检测可以设置阈值,提示词也可以设置阈值

检测框取了最大值:

自己封装的批量检测图片

mask做了压缩编码,保存为json

grounded_sam2_dao_img.py
import glob
import os
import cv2
import json
import torch
import numpy as np
import supervision as sv
import pycocotools.mask as mask_util
from pathlib import Path
import transformers
transformers.utils.logging.set_verbosity_error()  # 减少日志干扰
from torchvision.ops import box_convert
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from grounding_dino.groundingdino.util.inference impor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值