霍夫变换圆检测算法


还有一篇文章在这:

http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096

找圆算法((HoughCircles)总结与优化

图像处理之霍夫变换圆检测算法

转载 2017年07月14日 16:36:27
  • 506

- created by gloomyfish

图像处理之霍夫变换圆检测算法

之前写过一篇文章讲述霍夫变换原理与利用霍夫变换检测直线, 结果发现访问量还是蛮

多,有点超出我的意料,很多人都留言说代码写得不好,没有注释,结构也不是很清晰,所以

我萌发了再写一篇,介绍霍夫变换圆检测算法,同时也尽量的加上详细的注释,介绍代码

结构.让更多的人能够读懂与理解.

一:霍夫变换检测圆的数学原理


根据极坐标,圆上任意一点的坐标可以表示为如上形式, 所以对于任意一个圆, 假设

中心像素点p(x0, y0)像素点已知, 圆半径已知,则旋转360由极坐标方程可以得到每

个点上得坐标同样,如果只是知道图像上像素点, 圆半径,旋转360°则中心点处的坐

标值必定最强.这正是霍夫变换检测圆的数学原理.

二:算法流程

该算法大致可以分为以下几个步骤


三:运行效果

图像从空间坐标变换到极坐标效果, 最亮一点为圆心.


图像从极坐标变换回到空间坐标,检测结果显示:


四:关键代码解析

个人觉得这次注释已经是非常的详细啦,而且我写的还是中文注释

[html] view plain copy
  1. /**   
  2.  * 霍夫变换处理 - 检测半径大小符合的圆的个数   
  3.  * 1. 将图像像素从2D空间坐标转换到极坐标空间   
  4.  * 2. 在极坐标空间中归一化各个点强度,使之在0〜255之间   
  5.  * 3. 根据极坐标的R值与输入参数(圆的半径)相等,寻找2D空间的像素点   
  6.  * 4. 对找出的空间像素点赋予结果颜色(红色)   
  7.  * 5. 返回结果2D空间像素集合   
  8.  * @return int []   
  9.  */    
  10. public int[] process() {    
  11.     
  12.     // 对于圆的极坐标变换来说,我们需要360度的空间梯度叠加值    
  13.     acc = new int[width * height];    
  14.     for (int y = 0; y < height; y++) {    
  15.         for (int x = 0; x < width; x++) {    
  16.             acc[y * width + x] = 0;    
  17.         }    
  18.     }    
  19.     int x0, y0;    
  20.     double t;    
  21.     for (int x = 0; x < width; x++) {    
  22.         for (int y = 0; y < height; y++) {    
  23.     
  24.             if ((input[y * width + x] & 0xff) == 255) {    
  25.     
  26.                 for (int theta = 0; theta < 360; theta++) {    
  27.                     t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI    
  28.                     x0 = (int) Math.round(x - r * Math.cos(t));    
  29.                     y0 = (int) Math.round(y - r * Math.sin(t));    
  30.                     if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {    
  31.                         acc[x0 + (y0 * width)] += 1;    
  32.                     }    
  33.                 }    
  34.             }    
  35.         }    
  36.     }    
  37.     
  38.     // now normalise to 255 and put in format for a pixel array    
  39.     int max = 0;    
  40.     
  41.     // Find max acc value    
  42.     for (int x = 0; x < width; x++) {    
  43.         for (int y = 0; y < height; y++) {    
  44.     
  45.             if (acc[x + (y * width)] > max) {    
  46.                 max = acc[x + (y * width)];    
  47.             }    
  48.         }    
  49.     }    
  50.     
  51.     // 根据最大值,实现极坐标空间的灰度值归一化处理    
  52.     int value;    
  53.     for (int x = 0; x < width; x++) {    
  54.         for (int y = 0; y < height; y++) {    
  55.             value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);    
  56.             acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);    
  57.         }    
  58.     }    
  59.         
  60.     // 绘制发现的圆    
  61.     findMaxima();    
  62.     System.out.println("done");    
  63.     return output;    
  64. }    
完整的算法源代码, 已经全部的加上注释
[html] view plain copy
  1. package com.gloomyfish.image.transform.hough;    
  2. /***   
  3.  *    
  4.  * 传入的图像为二值图像,背景为黑色,目标前景颜色为为白色   
  5.  * @author gloomyfish   
  6.  *    
  7.  */    
  8. public class CircleHough {    
  9.     
  10.     private int[] input;    
  11.     private int[] output;    
  12.     private int width;    
  13.     private int height;    
  14.     private int[] acc;    
  15.     private int accSize = 1;    
  16.     private int[] results;    
  17.     private int r; // 圆周的半径大小    
  18.     
  19.     public CircleHough() {    
  20.         System.out.println("Hough Circle Detection...");    
  21.     }    
  22.     
  23.     public void init(int[] inputIn, int widthIn, int heightIn, int radius) {    
  24.         r = radius;    
  25.         width = widthIn;    
  26.         height = heightIn;    
  27.         input = new int[width * height];    
  28.         output = new int[width * height];    
  29.         input = inputIn;    
  30.         for (int y = 0; y < height; y++) {    
  31.             for (int x = 0; x < width; x++) {    
  32.                 output[x + (width * y)] = 0xff000000; //默认图像背景颜色为黑色    
  33.             }    
  34.         }    
  35.     }    
  36.     
  37.     public void setCircles(int circles) {    
  38.         accSize = circles; // 检测的个数    
  39.     }    
  40.         
  41.     /**   
  42.      * 霍夫变换处理 - 检测半径大小符合的圆的个数   
  43.      * 1. 将图像像素从2D空间坐标转换到极坐标空间   
  44.      * 2. 在极坐标空间中归一化各个点强度,使之在0〜255之间   
  45.      * 3. 根据极坐标的R值与输入参数(圆的半径)相等,寻找2D空间的像素点   
  46.      * 4. 对找出的空间像素点赋予结果颜色(红色)   
  47.      * 5. 返回结果2D空间像素集合   
  48.      * @return int []   
  49.      */    
  50.     public int[] process() {    
  51.     
  52.         // 对于圆的极坐标变换来说,我们需要360度的空间梯度叠加值    
  53.         acc = new int[width * height];    
  54.         for (int y = 0; y < height; y++) {    
  55.             for (int x = 0; x < width; x++) {    
  56.                 acc[y * width + x] = 0;    
  57.             }    
  58.         }    
  59.         int x0, y0;    
  60.         double t;    
  61.         for (int x = 0; x < width; x++) {    
  62.             for (int y = 0; y < height; y++) {    
  63.     
  64.                 if ((input[y * width + x] & 0xff) == 255) {    
  65.     
  66.                     for (int theta = 0; theta < 360; theta++) {    
  67.                         t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI    
  68.                         x0 = (int) Math.round(x - r * Math.cos(t));    
  69.                         y0 = (int) Math.round(y - r * Math.sin(t));    
  70.                         if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {    
  71.                             acc[x0 + (y0 * width)] += 1;    
  72.                         }    
  73.                     }    
  74.                 }    
  75.             }    
  76.         }    
  77.     
  78.         // now normalise to 255 and put in format for a pixel array    
  79.         int max = 0;    
  80.     
  81.         // Find max acc value    
  82.         for (int x = 0; x < width; x++) {    
  83.             for (int y = 0; y < height; y++) {    
  84.     
  85.                 if (acc[x + (y * width)] > max) {    
  86.                     max = acc[x + (y * width)];    
  87.                 }    
  88.             }    
  89.         }    
  90.     
  91.         // 根据最大值,实现极坐标空间的灰度值归一化处理    
  92.         int value;    
  93.         for (int x = 0; x < width; x++) {    
  94.             for (int y = 0; y < height; y++) {    
  95.                 value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);    
  96.                 acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);    
  97.             }    
  98.         }    
  99.             
  100.         // 绘制发现的圆    
  101.         findMaxima();    
  102.         System.out.println("done");    
  103.         return output;    
  104.     }    
  105.     
  106.     private int[] findMaxima() {    
  107.         results = new int[accSize * 3];    
  108.         int[] output = new int[width * height];    
  109.             
  110.         // 获取最大的前accSize个值    
  111.         for (int x = 0; x < width; x++) {    
  112.             for (int y = 0; y < height; y++) {    
  113.                 int value = (acc[x + (y * width)] & 0xff);    
  114.     
  115.                 // if its higher than lowest value add it and then sort    
  116.                 if (value > results[(accSize - 1) * 3]) {    
  117.     
  118.                     // add to bottom of array    
  119.                     results[(accSize - 1) * 3] = value; //像素值    
  120.                     results[(accSize - 1) * 3 + 1] = x; // 坐标X    
  121.                     results[(accSize - 1) * 3 + 2] = y; // 坐标Y    
  122.     
  123.                     // shift up until its in right place    
  124.                     int i = (accSize - 2) * 3;    
  125.                     while ((i >= 0) && (results[i + 3] > results[i])) {    
  126.                         for (int j = 0; j < 3; j++) {    
  127.                             int temp = results[i + j];    
  128.                             results[i + j] = results[i + 3 + j];    
  129.                             results[i + 3 + j] = temp;    
  130.                         }    
  131.                         i = i - 3;    
  132.                         if (i < 0)    
  133.                             break;    
  134.                     }    
  135.                 }    
  136.             }    
  137.         }    
  138.     
  139.         // 根据找到的半径R,中心点像素坐标p(x, y),绘制圆在原图像上    
  140.         System.out.println("top " + accSize + " matches:");    
  141.         for (int i = accSize - 1; i >= 0; i--) {    
  142.             drawCircle(results[i * 3], results[i * 3 + 1], results[i * 3 + 2]);    
  143.         }    
  144.         return output;    
  145.     }    
  146.     
  147.     private void setPixel(int value, int xPos, int yPos) {    
  148.         /// output[(yPos * width) + xPos] = 0xff000000 | (value << 16 | value << 8 | value);    
  149.         output[(yPos * width) + xPos] = 0xffff0000;    
  150.     }    
  151.     
  152.     // draw circle at x y    
  153.     private void drawCircle(int pix, int xCenter, int yCenter) {    
  154.         pix = 250; // 颜色值,默认为白色    
  155.     
  156.         int x, y, r2;    
  157.         int radius = r;    
  158.         r2 = r * r;    
  159.             
  160.         // 绘制圆的上下左右四个点    
  161.         setPixel(pix, xCenter, yCenter + radius);    
  162.         setPixel(pix, xCenter, yCenter - radius);    
  163.         setPixel(pix, xCenter + radius, yCenter);    
  164.         setPixel(pix, xCenter - radius, yCenter);    
  165.     
  166.         y = radius;    
  167.         x = 1;    
  168.         y = (int) (Math.sqrt(r2 - 1) + 0.5);    
  169.             
  170.         // 边缘填充算法, 其实可以直接对循环所有像素,计算到做中心点距离来做    
  171.         // 这个方法是别人写的,发现超赞,超好!    
  172.         while (x < y) {    
  173.             setPixel(pix, xCenter + x, yCenter + y);    
  174.             setPixel(pix, xCenter + x, yCenter - y);    
  175.             setPixel(pix, xCenter - x, yCenter + y);    
  176.             setPixel(pix, xCenter - x, yCenter - y);    
  177.             setPixel(pix, xCenter + y, yCenter + x);    
  178.             setPixel(pix, xCenter + y, yCenter - x);    
  179.             setPixel(pix, xCenter - y, yCenter + x);    
  180.             setPixel(pix, xCenter - y, yCenter - x);    
  181.             x += 1;    
  182.             y = (int) (Math.sqrt(r2 - x * x) + 0.5);    
  183.         }    
  184.         if (x == y) {    
  185.             setPixel(pix, xCenter + x, yCenter + y);    
  186.             setPixel(pix, xCenter + x, yCenter - y);    
  187.             setPixel(pix, xCenter - x, yCenter + y);    
  188.             setPixel(pix, xCenter - x, yCenter - y);    
  189.         }    
  190.     }    
  191.     
  192.     public int[] getAcc() {    
  193.         return acc;    
  194.     }    
  195.     
  196. }    

发布了2671 篇原创文章 · 获赞 971 · 访问量 526万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览