fatal error: nsync_cv.h: No such file or directory

参考:https://github.com/tensorflow/tensorflow/issues/12482

Hi,
I came up with a solution. Taking into account that I was able to compile everything from source on different machines, I just changed the file mutex.h for the following code:


/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.


Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at


    http://www.apache.org/licenses/LICENSE-2.0


Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/


#ifndef TENSORFLOW_PLATFORM_DEFAULT_MUTEX_H_
#define TENSORFLOW_PLATFORM_DEFAULT_MUTEX_H_


// IWYU pragma: private, include "third_party/tensorflow/core/platform/mutex.h"
// IWYU pragma: friend third_party/tensorflow/core/platform/mutex.h


#include <chrono>
#include <condition_variable>
#include <mutex>
#include "tensorflow/core/platform/thread_annotations.h"
namespace tensorflow {


#undef mutex_lock


enum LinkerInitialized { LINKER_INITIALIZED };


// A class that wraps around the std::mutex implementation, only adding an
// additional LinkerInitialized constructor interface.
class LOCKABLE mutex : public std::mutex {
 public:
  mutex() {}
  // The default implementation of std::mutex is safe to use after the linker
  // initializations
  explicit mutex(LinkerInitialized x) {}


  void lock() ACQUIRE() { std::mutex::lock(); }
  bool try_lock() EXCLUSIVE_TRYLOCK_FUNCTION(true) {
    return std::mutex::try_lock();
  };
  void unlock() RELEASE() { std::mutex::unlock(); }
};


class SCOPED_LOCKABLE mutex_lock : public std::unique_lock<std::mutex> {
 public:
  mutex_lock(class mutex& m) ACQUIRE(m) : std::unique_lock<std::mutex>(m) {}
  mutex_lock(class mutex& m, std::try_to_lock_t t) ACQUIRE(m)
      : std::unique_lock<std::mutex>(m, t) {}
  mutex_lock(mutex_lock&& ml) noexcept
      : std::unique_lock<std::mutex>(std::move(ml)) {}
  ~mutex_lock() RELEASE() {}
};


// Catch bug where variable name is omitted, e.g. mutex_lock (mu);
#define mutex_lock(x) static_assert(0, "mutex_lock_decl_missing_var_name");


using std::condition_variable;


inline ConditionResult WaitForMilliseconds(mutex_lock* mu,
                                           condition_variable* cv, int64 ms) {
  std::cv_status s = cv->wait_for(*mu, std::chrono::milliseconds(ms));
  return (s == std::cv_status::timeout) ? kCond_Timeout : kCond_MaybeNotified;
}


}  // namespace tensorflow


#endif  // TENSORFLOW_PLATFORM_DEFAULT_MUTEX_H_
Can you edit your post and show specs of machine, tensorflow version & bazel. Thanks (Just to detect where can be the mistake).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值