step_by_step_deep_learn(二) model

N, D_in, H, D_out = 64, 1000, 100, 10

x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = dense(D_in, H, D_out)

learning_rate=1e-4
optim = torch.optim.Adam(model.parameters(), learning_rate)
loss_fn = torch.nn.MSELoss(reduction='sum')
for t in range(500):
    y_pred = model(x)
    loss = loss_fn(y, y_pred)
    print(t, loss.item())
    optim.zero_grad()
    loss.backward()
    optim.step()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值