这篇文章的起因是前些天听到一句话:“人脑的算力大概是5000TOPS”,由此产生了些许疑惑。本着“求是”的精神,讨论一下人脑算力的估算值。如果你也有诸如“电脑的计算力达到人脑水平了吗”之类的疑惑,推荐你阅读。
首先,为了完成算力估算和对比,得和读者们约定一个计量单位。这里我们使用在业界常用的指标:OPS,即每秒运算次数(Operations per second)。对任一个处理器,每秒钟能够处理的运算次数越多,则意味着算力越强。
一些常见的单位包括:
- GOPS(gigaOPS,每秒十亿次运算)
- TOPS(teraOPS,每秒一兆/一万亿次运算)
- POPS(petaOPS,每秒一千兆/一千万亿次运算)
- 其他的还可见下表:

除了OPS之外,常用的还有FLOPS(每秒浮点运算次数, Floating-point operations per second)。浮点运算属于运算(OP)的一种,指的是带小数的加减乘除运算。
从Wikipedia上摘一些不同处理器的算力水平[2],供大家对算力的强弱形成一些直观的感受:
- NVIDIA GeForce RTX 2080: 10.1 TFLOPS
- NVIDIA Tesla V100: 14.1 TFLOPS
- 神威太湖之光:93.01 PFLOPS
- 比特币全网算力(2018/5) : 35 EFLOPS(exaFLOPS,每秒一百京/一百亿亿次浮点运算)

第二步,理解了计量单位之后,可以开始粗略估算一下人脑的算力。
注:对于人脑的算力估计方式多种多样,从 1015到 1028 FLOPS都有,因此本文采用的估算方法仅代表我个人观点,并非权威,特此说明。
做几个数字上的估计(这些数字可能会随着对人脑的研究发生变化):
- 单个人脑的神经元数量:普遍估计是~1000亿个;
- 单个神经元与多少个其他神经元连接:估计是在10000个这一量级;
- 单个神经元连接的激活速度:这一部分的争议较大,这里选用参考文献[4]中的数值——单个神经元的激活频率约2Hz,即一秒激活2次;
根据这三个维度的数字,我们有:
人脑的算力=神经元个数(10^11个)*单个神经元连接数(10^4个)*单个连接的激活速度(2 OP/个秒);
因此,我们估算出的人脑算力在2x10^15 OPS的量级,即是2 petaFLOPS左右。和下图左下角的对人脑的估算结果2.2 billion megaflops [5]相同,接近本文引言部分提的5000TOPS(同一量级),但小于神威·太湖之光的93.01 petaFLOPS。

最后,从数值上看计算脑已经远超人脑了,但这并不意味着计算脑和人脑之间已经不存在差距了。我们可以从下面几点来辩证地看待这篇文章:
- 前文使用的FLOPS不能完全反映人脑的算力。FLOPS其实只能表达计算性能的一部分,其他同样重要的指标例如:数据的读写性能。往往一款芯片它在实际运行时的算力和它的理论FLOPS之间,存在着一段不小的差距。另外,人脑并不是为数学运算而生的,而FLOPS衡量的运算速度只是数学运算意义上的算力;
- 哪怕在实现相同算力的情况下,人脑的功耗远低于而效率却远高于计算脑。一台超级计算机的耗能足够供给一整栋大楼,而一个人脑的耗能约等于点亮一个灯泡[1]。因此,为了将功耗也纳入性能的考量,越来越多使用TOPS/W作为性能指标之一,即衡量在1W功耗下,处理器能进行的运算次数。类似的,一台超级算机器的占用空间远高于一个人脑的体积;
在自动驾驶领域使用的嵌入式芯片的神经网络计算单元,除了用OPS来衡量以外,还需要额外考虑能效比TOPS/W [3]:
- Mobileye Eye Q4:2.5 TOPS,3W,0.83 TOPS/W
- 地平线J2:4 TOPS,2 W,2 TOPS/W
- NVIDIA Xavier:30 TOPS,30 W,1 TOPS/W
- Tesla FSD 单芯片:144 TOPS,72 W,2 TOPS/W
- 黑芝麻华山二号A1000:40 TOPS,8-10W,5 TOPS/W
- 地平线J5:96 TOPS,15W,6 TOPS/W
- 计算脑发展至今的结构仍遵循着“冯·诺依曼体系”,在这个结构下的神经网络、深度学习方法,其运算、学习的效率仍远低于人脑。
总的来说,计算脑和人脑的差距不是简单能用数字来衡量的,可能是方法论上的差距。
计算脑在存储和运算速度上强于人脑,但人脑在运算效率上远高于计算脑。
而现在的浅薄的我们,能做到的只是用这些浅薄的数字做一些“管中窥豹”、“坐井观天”的工作罢了。
人类进化了上亿年才出现了如今的完美、高效的器官,对于计算脑,不妨让子弹再飞一会儿。

参考文献:
[1] https://foglets.com/supercomputer-vs-human-brain/
[2] https://zh.wikipedia.org/wiki/%E6%AF%8F%E7%A7%92%E6%B5%AE%E9%BB%9E%E9%81%8B%E7%AE%97%E6%AC%A1%E6%95%B8
[3] http://www.51wctt.com/News/45730/Detail/1
[4] https://aiimpacts.org/rate-of-neuron-firing/
[5] https://www.scientificamerican.com/article/computers-vs-brains/