线性代数
Jakob_Hu
当你无助时
展开
-
线性代数(2)——向量进阶
向量进阶向量的长度向量的模实现求取向量的模单位向量概念单位向量实现向量的点乘(内积)概念代码实现点乘的应用Numpy中的向量向量的长度向量的模向量的长度也叫向量的模,线性代数中常使用 ||u|| 两个双竖线括起。向量的模求取的方式为∣∣u⃗∣∣||\vec{u}||∣∣u∣∣,向量的模的求取方式为,假设存在一个向量 u⃗\vec{u}uu⃗=(u1,u2,...,un)T\vec{u}...原创 2019-05-24 22:27:17 · 1705 阅读 · 0 评论 -
线性代数(10)——初等矩阵和矩阵可逆性(下)
初等矩阵和矩阵可逆性矩阵的LU分解概念LU分解过程LU分解的意义代码实现矩阵的LU分解概念矩阵的分解实际上就是将一个矩阵分解成为几个矩阵乘积的形式。不同类型的矩阵分解有不同的目的,如矩阵的LU分解的目的是为了提高计算效率。LU分解实际上是将一个矩阵AAA分解成为两个矩阵LLL和UUU的乘积,即 A=L⋅UA = L \cdot UA=L⋅U,L:Lower triangle matri...原创 2019-05-29 12:57:03 · 1206 阅读 · 0 评论 -
线性代数(12)——向量空间、维度和四大子空间(上)
向量空间、维度和四大子空间空间的概念欧几里得空间向量空间广义向量空间子空间欧几里得空间的子空间维度概念子空间和维度行空间和矩阵的秩行空间行秩列空间与列秩行空间和列空间对比空间的概念空间是一个集合。欧几里得空间欧几里得空间是有序的实数元组的集合,如(6,66)属于一个二维欧几里得空间,R2(6, 66)属于一个二维欧几里得空间,R^2(6,66)属于一个二维欧几里得空间,R2(3.14,...原创 2019-06-01 13:38:19 · 4399 阅读 · 0 评论 -
线性代数(17)——坐标转换
坐标转换空间的基与坐标系任意坐标系与标准坐标系之间的转换任意坐标系之间的转换标准单位矩阵作为桥梁结论验证不使用单位坐标系为桥梁的情况空间的基与坐标系坐标系是理解空间的基的一个视角,如果只到了一个坐标系也相当于知道了空间中的一组基向量。之前的笔记中提及过,对于同一个点,在不同的基向量构成的坐标系中,其表示形式是不同的,如下图所示,故对空间的基和坐标系之间的关系作出如下定义,如果给定向量空...原创 2019-06-06 23:16:01 · 6836 阅读 · 0 评论 -
线性代数(22)——矩阵SVD分解
矩阵SVD分解对称矩阵概念对称矩阵性质正交对角化对称矩阵一定可以被正交对角化如果一个矩阵能够被正交对角化,则它一定是对称矩阵谱定理奇异值概念奇异值几何意义对称矩阵借助对称矩阵可以处理任何矩阵,将任何矩阵都分解成希望的形式。概念对称矩阵中所有元素沿主对角线对称,主对角线元素不要求实相同的。用数学语言表述为A=ATA=A^TA=AT。对称矩阵也一定是方阵。对称矩阵性质对称矩阵的特征值一定...原创 2019-06-13 20:02:14 · 4445 阅读 · 0 评论 -
线性代数(18)——行列式(上)
行列式行列式概念行列式求法二维空间为例三阶及以上行列式行列式的四个基本性质行列式与矩阵的逆行列式性质延伸行列式与矩阵的逆行列式概念行列式是方阵的一个属性,在之前对矩阵的理解是“矩阵是一组向量”每一列对应着一个向量,而方阵表示的是nnn个nnn维向量。行列式是一个数字,以二维空间为例,下面的三组基向量都是构成二维空间的向量,构成这三个二维坐标系的向量围成的面积就是行列式。继续深入到三维、四...原创 2019-06-07 22:15:16 · 3247 阅读 · 0 评论 -
线性代数(19)——行列式(下)
行列式行列式计算对角矩阵行列式计算上、下三角矩阵行列式计算初等矩阵与行列式行式就是列式行列式计算在之前的基础上对行列式的性质进一步拓展,如果一个行列式的一行加(减)另一行的kkk倍,行列式的值不变。具体的证明过程如下,整个过程与Gauss-Jordan消元法的过程是一致的。行列式的值与其经过Gauss-Jordan消元法后得到的行最简形式的行列式的结果是相等的。有一点不同的是,在行列式消元...原创 2019-06-07 22:37:01 · 1713 阅读 · 0 评论 -
线性代数(13)——向量空间、维度和四大子空间(下)
向量空间、维度和四大子空间零空间的基和秩-零化度定理零空间及零空间的基秩-零化度定理列空间与零空间对比零空间与矩阵的逆深入理解零空间左零空间回顾已有的三个子空间第四个子空间研究子空间的意义零空间的基和秩-零化度定理零空间及零空间的基一个齐次线性系统A⋅x=0A\cdot x=0A⋅x=0的解就是对应的系数矩阵的零空间。首先通过一个简单的齐次线性方程组进行演示,(−1231−4−13−35...原创 2019-06-02 16:19:39 · 2275 阅读 · 0 评论 -
线性代数(20)——特征值和特征向量(上)
特征值和特征向量概念求解特征值和特征向量计算过程相关概念特征值与特征向量的性质特殊方阵的特征值和特征向量若λ是方阵A的特征值,则λ^m^是A^m^的特征值如果矩阵A含有两个不同的特征值,则他们对应的特征向量是线性无关的特征值和特征向量是线性代数中十分关键的一部分内容。概念特征值和特征向量都是方阵的属性。描述的是方阵的特征,同时特征值和特征向量表征是当方阵做变换时候的一个特征。具体举例如下,...原创 2019-06-08 16:57:58 · 11271 阅读 · 0 评论 -
线性代数(16)——线性变换
线性变换理解变换矩阵运算就是线性变换线性变换的应用理解变换变换是一个函数,如果一个变换被称为线性变换,则必须满足下面的两个条件,T(u⃗+v⃗)=T(u⃗)+T(v⃗)T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})T(u+v)=T(u)+T(v)T(cu⃗)=cT(u⃗)T(c\vec{u})=cT(\vec{u})T(cu)=cT(u),其中ccc是常...原创 2019-06-05 20:27:52 · 3140 阅读 · 0 评论 -
线性代数(15)——矩阵的QR分解
矩阵的QR分解和LU分解的目的都是为了便于矩阵计算。矩阵的QR分解概述A=QRA=QRA=QR这一过程将矩阵分解为QQQ和RRR两部分,其中QQQ是标准正交矩阵,RRR是一个上三角矩阵。矩阵的QRQRQR分解能够简化计算可以以线性系统的计算为例,Ax=b⟹(QR)x=bAx=b\Longrightarrow (QR)x=bAx=b⟹(QR)x=bQ−1QRx=Q−1b⟹Rx=QTbQ^...原创 2019-06-05 18:53:30 · 52898 阅读 · 1 评论 -
线性代数(9)——初等矩阵和矩阵可逆性(上)
初等矩阵和矩阵可逆性求解矩阵的逆矩阵的逆运算实现矩阵的逆之前的笔记中曾提及过矩阵的逆的概念,但是并没有具体说明矩阵的逆的求法。求解矩阵的逆矩阵的逆运算矩阵中AB=BA=IAB=BA=IAB=BA=I,则称B是A的逆矩阵,记为B=A−1B=A^{-1}B=A−1。只有方阵才有逆矩阵。求解逆矩阵以下面的例子作为引入,因为Gauss-Jordan消元法是针对系数矩阵进行操作,而结果矩阵是随...原创 2019-05-28 17:14:34 · 5506 阅读 · 0 评论 -
线性代数(3)——矩阵基础
矩阵基础概述实现矩阵类矩阵基本运算和性质矩阵加法矩阵数乘矩阵运算性质矩阵基本运算代码实现概述向量是对数的拓展,一个向量表示一组数;而矩阵则可以视为对向量的拓展,一个矩阵表示一组向量。看待一个矩阵有两个视角,行向量视角和列向量视角。当行数和列数相等时候,称为方阵,方阵有很多特殊的性质。有很多特殊的性质的矩阵,是方阵。实现矩阵类from vector import Vectorcla...原创 2019-05-25 11:37:52 · 517 阅读 · 0 评论 -
线性代数(4)——矩阵进阶
矩阵进阶矩阵——系统矩阵乘法矩阵和向量的乘法矩阵和矩阵的乘法矩阵乘法实现矩阵乘法的性质与矩阵的幂矩阵——系统矩阵看做是一个系统,使用矩阵可以表示一个线性系统。如使用矩阵表示一个方程组,{xi+0.2xj+0.1xk+0.5xl=100−0.5xi+xj+0.2xk+0.1xl=50−0.4xj−xk+0.3xl=20−0.2xi+xl=666\begin{cases}x_i+0.2x_j+0...原创 2019-05-25 14:38:44 · 719 阅读 · 0 评论 -
线性代数(5)——矩阵高级
矩阵高级图形学应用沿坐标轴延伸沿坐标轴翻转图形学应用沿坐标轴延伸矩阵可以表示某个图形,矩阵相乘实际上可以看做一个矩阵被另一个矩阵转换成其他图形的过程。如,(2.0001.5)⋅(xy)=(2x1.5y)\begin{pmatrix}2.0&0\\0&1.5\end{pmatrix}\cdot\begin{pmatrix}x\\y\end{pmatrix}=\...原创 2019-05-26 21:52:26 · 2055 阅读 · 0 评论 -
线性代数(6)——线性系统(上)
线性系统高斯消元法高斯-约旦消元法(基础)前向过程(从上到下)后向过程(从下到上)代码实现目前的局限所谓的“线型系统”实际上可以理解为线性方程组,更严谨的定义为“包含未知数的项,未知数的次数只能为1的方程组”。研究线型系统实际上就是为了解出线性方程组的解,这一过程可以使用线型代数。高斯消元法将方程组中的未知数一个一个消去,这是最简单的思路,最终仅剩下一个未知数的时候进行求解,而后带入到其他方...原创 2019-05-26 23:33:43 · 683 阅读 · 0 评论 -
线性代数(7)——线性系统(中)
线性系统无解与无穷解线性系统无解线性系统无穷解线性系统解的判定上一部分的讨论针对的是线性系统存在n个未知数n个方程且线型系统有唯一解的情况。但是在实际情况下,线型系统中未知数数目和方程的数目可能并不相同,且线型系统也存在无解和无穷解的情况。这是在这一部分中着重讲解的。无解与无穷解线性系统无解以下面的一个线性系统作为无解的例子引入,对于下面的线性系统依旧使用高斯-约旦消元法进行求解,{x+...原创 2019-05-27 11:15:20 · 3781 阅读 · 1 评论 -
线性代数(11)——线性相关、线性无关和生成空间
线性相关、线性无关和生成空间线性组合线性相关和线性无关线性相关线性无关线性组合在标量中存在线性函数,即k个标量和另外kkk个标量的组合 k1⋅x1+k2⋅x2+……+kp⋅xpk_1\cdot x_1+k_2\cdot x_2+……+k_p\cdot x_pk1⋅x1+k2⋅x2+……+kp⋅xp,标量的线性组合最终得到的依旧是一个标量。线性组合是针对向量而言的,可以理解为,给定...原创 2019-05-30 13:32:25 · 4210 阅读 · 3 评论 -
线性代数(8)——线性系统(下)
线性系统通用的Gauss-Jordan消元法回顾Gauss-Jordan消元过程上一节中对线性系统解的结构进行了更加复杂的说明,具体的步骤是使用Gauss-Jordan消元法将线性系统化为行最简形式,在本节中将对未知数个数和方程个数不匹配的情况进行讲解。通用的Gauss-Jordan消元法回顾Gauss-Jordan消元过程前向过程1)选择嘴上的主元化为12)主元下面所有行减去主元所...原创 2019-05-27 19:27:39 · 804 阅读 · 0 评论 -
线性代数(1)——向量基础
向量基础什么是向量?引入向量的原因更多的向量术语实现向量类向量基本运算向量加法向量数乘什么是向量?引入向量的原因向量是一组数的基本表示方法,是线性代数的基本元素。研究一组数的基本出发点是因为使用一组数能够更好地表示方向。向量的起始点统一认为是从(0, 0)点,即原点开始。但是向量是一组有序的数字,即便是所有数字相同的向量,顺序不同其表征的方向和含义也是不同的。如果向量仅仅用于表征方向,最多...原创 2019-05-23 20:23:00 · 2142 阅读 · 0 评论 -
线性代数(14)——正交性、标准正交基和投影
正交性、标准正交基和投影正交基与标准正交基一维投影高维投影和Gram-Schmidt过程三维空间四维及以上空间实现Gram-Schmidt过程相关话题标准正交基的性质正交基与标准正交基一个nnn维空间中任何一组线性无关的向量,都是这个nnn维空间的一组基。当这组基的向量两两垂直,则称为正交基。而标准正交基只是将正交基又添加了一个条件,模长为1。一个空间可以有无数组基向量,正交基和标准正交基也同...原创 2019-06-04 21:13:20 · 19445 阅读 · 1 评论