特征值和特征向量
特征值和特征向量是线性代数中十分关键的一部分内容。
概念
特征值和特征向量都是方阵的属性。描述的是方阵的特征,同时特征值和特征向量表征是当方阵做变换时候的一个特征。具体举例如下,
以一个向量在两个空间坐标系中的转换为例,给出空间基向量的矩阵,一个是标准基,另一个是 A A A,
对于一些向量,满足如下特点,
总结为一个向量经过坐标转换后对应的向量与其本身相比方向不变,是其某个倍数。这种向量 u ⃗ \vec{u} u称为 A A A矩阵对应于 λ \lambda λ的特征向量,相应的倍数称为 A A A矩阵的特征值。
求解特征值和特征向量
对于 A u ⃗ = λ u ⃗ A\vec{u} = λ\vec{u} Au=λu而言,零向量在任何情况下是肯定满足的,即零向量是一个平凡解。所以,特征向量不考虑零向量。
但是, λ = 0 λ=0 λ=0并不平凡,当 λ = 0 λ=0 λ=0时, A u ⃗ = 0 A\vec{u} = 0 Au=0是一个齐次线性方程组。回顾之前的知识,如果矩阵 A A A可逆,则 A u ⃗ = 0 A\vec{u}=0 Au=0这个线性系统的 u ⃗ \vec{u} u