线性代数(20)——特征值和特征向量(上)


特征值和特征向量是线性代数中十分关键的一部分内容。

概念

特征值和特征向量都是方阵的属性。描述的是方阵的特征,同时特征值和特征向量表征是当方阵做变换时候的一个特征。具体举例如下,

以一个向量在两个空间坐标系中的转换为例,给出空间基向量的矩阵,一个是标准基,另一个是 A A A
在这里插入图片描述
对于一些向量,满足如下特点,
在这里插入图片描述
总结为一个向量经过坐标转换后对应的向量与其本身相比方向不变,是其某个倍数。这种向量 u ⃗ \vec{u} u 称为 A A A矩阵对应于 λ \lambda λ的特征向量,相应的倍数称为 A A A矩阵的特征值。

求解特征值和特征向量

对于 A u ⃗ = λ u ⃗ A\vec{u} = λ\vec{u} Au =λu 而言,零向量在任何情况下是肯定满足的,即零向量是一个平凡解。所以,特征向量不考虑零向量

但是, λ = 0 λ=0 λ=0并不平凡,当 λ = 0 λ=0 λ=0时, A u ⃗ = 0 A\vec{u} = 0 Au =0是一个齐次线性方程组。回顾之前的知识,如果矩阵 A A A可逆,则 A u ⃗ = 0 A\vec{u}=0 Au =0这个线性系统的 u ⃗ \vec{u} u

LAPACK是一种线性代数库,用于解决各种数值线性代数问题,包括矩阵特征值特征向量的求解。下面我们来介绍一下LAPACK库中求解矩阵特征值特征向量的函数。 1. DSYEV函数 DSYEV函数用于求解实对称矩阵的特征值特征向量。该函数的原型如下: ``` void dsyev(char jobz, char uplo, int n, double* a, int lda, double* w, double* work, int lwork, int* info); ``` 参数说明: - jobz:指定计算特征值还是特征向量,取值为'N'(只计算特征值)或'V'(同时计算特征值特征向量)。 - uplo:指定矩阵的上三角部分还是下三角部分存储在数组a中,取值为'U'(上三角部分)或'L'(下三角部分)。 - n:矩阵的维数。 - a:存储矩阵的一维数组。 - lda:指定a数组中每个列向量的存储长度(通常为n)。 - w:存储特征值的一维数组。 - work:工作空间数组。 - lwork:指定work数组的长度(通常为3n)。 - info:返回求解结果,取值为0表示成功,其他值表示出错。 2. ZGEEV函数 ZGEEV函数用于求解复矩阵的特征值特征向量。该函数的原型如下: ``` void zgeev(char jobvl, char jobvr, int n, std::complex<double>* a, int lda, std::complex<double>* w, std::complex<double>* vl, int ldvl, std::complex<double>* vr, int ldvr, std::complex<double>* work, int lwork, double* rwork, int* info); ``` 参数说明: - jobvl:指定是否计算左特征向量,取值为'N'(不计算)或'V'(计算)。 - jobvr:指定是否计算右特征向量,取值为'N'或'V'。 - n:矩阵的维数。 - a:存储矩阵的一维数组。 - lda:指定a数组中每个列向量的存储长度(通常为n)。 - w:存储特征值的一维数组。 - vl:存储左特征向量的一维数组。 - ldvl:指定vl数组中每个列向量的存储长度(通常为n)。 - vr:存储右特征向量的一维数组。 - ldvr:指定vr数组中每个列向量的存储长度(通常为n)。 - work:工作空间数组。 - lwork:指定work数组的长度(通常为2n)。 - rwork:实数数组,长度为2n(用于存储中间计算结果)。 - info:返回求解结果,取值为0表示成功,其他值表示出错。 以上就是LAPACK库中求解矩阵特征值特征向量的函数介绍。需要注意的是,在调用这些函数之前,需要先将矩阵按列存储方式存储在一维数组中,并传入一些参数,如矩阵的维数、存储方式等。具体的参数可以参考LAPACK库的文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值